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Preliminaries

Decoupled Training for Long-tailed Classification

• The real-world classification data are often long-tailed.
• The iNaturalist dataset is a prominent example of this phenomenon.

Figure 1: Distribution of the number of train examples per species for
iNaturalist datasets, plotted on a log-linear scale1 .

1image credit: Grant Van Horn and Oisin Mac Aodha.
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Preliminaries

Decoupled Training for Long-tailed Classification

• Decoupling representation learning and classifier learning has been
shown to be effective in long-tailed classification [Kang et al., 2020].

It is also possible to achieve strong long-tailed recognition
ability by adjusting only the classifier, with representations
learned with the simplest instance-balanced sampling.

• In a nutshell, we can implement decoupled training as follows;

1. Representation learning stage,

(θ∗,ϕ∗) = argmin
(θ,ϕ)

E(x,y)∼D [L(θ,ϕ;x, y)] . (1)

2. Classifier re-training stage [cRT; Kang et al., 2020],

ϕ∗∗ = argmin
ϕ

E(x,y)∼DCB [L(θ
∗,ϕ;x, y)] . (2)
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Decoupled Training w/ Stochastic Representations

Constructing an effective decoupled learning scheme

• [Q1] How to train the feature extractor for representation learning so
that it provides generalizable representations?

• [Q2] How to re-train the classifier that constructs proper decision
boundaries by handling class imbalances in long-tailed data?
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Decoupled Training w/ Stochastic Representations

Does the success of SWA continue in the long-tailed classification?

• Stochastic Weight Averaging (SWA) improves the generalization
performance by seeking flat minima in loss surfaces [Izmailov et al., 2018].

• Without classifier re-training, SWA itself does not bring significant
performance gain for long-tailed classification tasks.

• We diagnose that SWA actually enhances the quality of the feature
extractor, but the classification layer is acting as a bottleneck.

[A1] Confirming that SWA can benefit long-tailed classification, we
apply SWA to obtain more generalizing feature extractor.
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Decoupled Training w/ Stochastic Representations

Stochastic representations reflect the difficulty of each input.

• SWA-Gaussian (SWAG) further provides a Gaussian approximation that
captures the geometry of the posterior over parameters [Maddox et al., 2019].

Figure 2: Quadratic loss contour plot and iterates of SGD [Maddox et al., 2019].

• We consider the stochastic representations,

{F(x;θm)}Mm=1, where θ1, ..., θM ∼ q(θ|D) = N (θ;θSWA,ΣSWAG). (3)
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Decoupled Training w/ Stochastic Representations

Stochastic representations reflect the difficulty of each input.

• Empirically, the stochastic representations well reflect the uncertainty of
inputs, e.g., the head-class instance tends to have smaller dispersion.

• The dispersion quantifies how stochastic representations are scattered.
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Figure 3: The per-class dispersion along with class indices on ImageNet-LT. It
measured in (left) the representation space and (right) the probability space.

[A2] Confirming that the stochastic representations obtained from
SWAG well reflect the uncertainty of inputs, we utilize them to
build more robust decision boundary.
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Decoupled Training w/ Stochastic Representations

Figure 4: Schematic diagrams depicting the overall concepts of the paper. Left: An illus-
tration of two-dimensional representation space. Right: Our proposed self-distillation
strategy obtaining more robust decision boundaries.
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Experimental Results

Table 1: Ablation studies of proposed methods on ImageNet-LT: classification accuracy
(ACC), negative log-likelihood (NLL), and expected calibration error (ECE).

Method ACC (↑) NLL (↓) ECE (↓)

SGD w/ classifier re-training 50.97 2.231 0.063
+ (a) introducing SWA for the representation learning 51.62 2.206 0.077
+ (b) classifier re-training w/ stochastic representation 51.84 2.208 0.090
+ (c) classifier re-training w/ self-distillation 52.12 2.130 0.037
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Experimental Results

Table 2: Results on ImageNet-LT: classification accuracy (ACC), negative log-likelihood
(NLL), and expected calibration error (ECE).

ACC (↑)

ImageNet-LT Many Medium Few All NLL (↓) ECE (↓)

SGD 66.84±0.26 40.78±0.24 12.05±0.23 46.91±0.22 2.546±0.009 0.158±0.003

+ cRT [Kang et al., 2020] 62.83±0.23 46.92±0.26 26.33±0.16 50.25±0.18 2.364±0.008 0.110±0.001

+ LWS [Kang et al., 2020] 63.23±0.26 47.57±0.24 27.78±0.23 50.91±0.15 2.197±0.007 0.054±0.001

+ LA [Menon et al., 2021] 60.79±0.20 48.11±0.14 33.20±0.34 50.97±0.13 2.231±0.004 0.063±0.001

+ DisAlign [Zhang et al., 2021] 61.63±0.39 48.68±0.11 32.71±0.45 51.49±0.15 2.596±0.012 0.202±0.002

SWA 67.71±0.11 40.74±0.15 11.01±0.10 47.08±0.12 2.631±0.009 0.187±0.002

+ cRT [Kang et al., 2020] 63.54±0.18 47.68±0.16 26.85±0.28 50.95±0.12 2.353±0.012 0.120±0.002

+ LWS [Kang et al., 2020] 63.51±0.30 48.53±0.07 28.66±0.45 51.60±0.10 2.189±0.007 0.077±0.002

+ LA [Menon et al., 2021] 61.60±0.07 48.70±0.03 33.68±0.34 51.62±0.05 2.206±0.009 0.077±0.002

+ DisAlign [Zhang et al., 2021] 62.43±0.20 49.48±0.15 32.65±0.43 52.18±0.11 2.673±0.014 0.215±0.002

+ SRepr (ours) 62.52±0.26 49.44±0.18 32.14±0.41 52.12±0.06 2.130±0.006 0.037±0.001
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Experimental Results

To summarize:

• We first apply SWA to obtain better generalizing feature extractors for
long-tailed classification.

• We then propose a new classifier re-training algorithm using stochastic
representation obtained from SWA-Gaussian.

• Our approach improves both accuracy and uncertainty estimation.

More experimental results are available in the paper!

• Results on CIFAR-10-LT, CIFAR-100-LT, and iNaturalist-2018.
• Ablations with various balancing strategies.
• Further analysis on proposed methods.
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