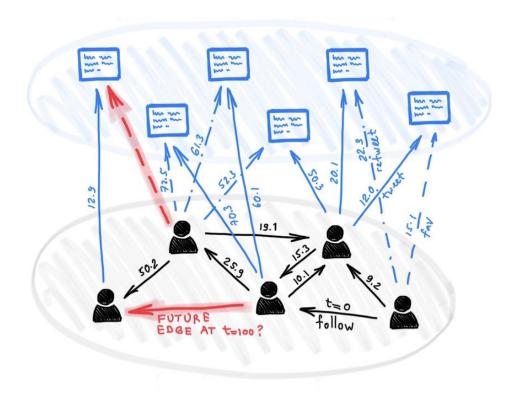
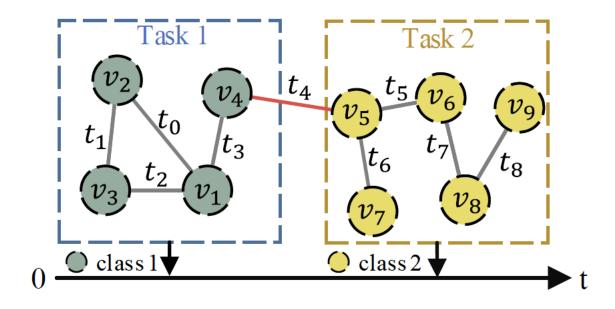
Towards Open Temporal Graph Neural Networks

Kaituo Feng¹, Changsheng Li¹, Xiaolu Zhang², Jun Zhou²

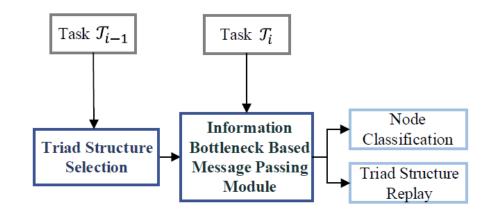

Beijing Institute of Technology¹ Ant Group²


Background

- Temporal graph represents a sequence of time-stamped events.
- Recently, temporal graph neural networks (TGNs) have become powerful models for learning temporal graphs.

Background

- A basic assumption among TGNs is that the class set of nodes is always closed.
- However, in real-world scenarios, it often faces the open set problem with the dynamically increased class set as the time passes by.


Motivation

• We attempt to investigate open temporal graph neural network.

- Challenge 1:
 - ➤What knowledge should be transferred between connected new class node and old class node on open temporal graph neural network?
- Challenge 2:
 - ➢How to address the catastrophic forgetting over old classes on open temporal graph neural network?

Method

- To prevent catastrophic knowledge forgetting, we propose to select representative and diverse triads to replay.
- To mitigate the issue of heterophily propagation, We design a new message passing mechanism to only propagate class-agnostic knowledge between nodes of different classes.

Method

- Based on information bottleneck, we could extract class-agnostic representations from node embeddings.
- For connected nodes with different classes, we only transfer class-agnostic knowledge between them.
- We assume the pseudo-label of a test node to be the one that appears the most times among its neighbor nodes in the training set.

$$J_{IB} = \min_{Z(t)} I(Z(t), Y) - \beta I(Z(t), X(t))$$

 $J_{IB} \leq \mathcal{L}_{IB} = \mathbb{E}_{p(Z(t),Y)}[\log q_{\mu}(y|z(t))] - \mathbb{E}_{p(Z(t))}\mathbb{E}_{p(Y)}[\log q_{\mu}(y|z(t))]$ $- \beta(\sup_{\psi}\mathbb{E}_{p(X(t),Z(t))}[T_{\psi}(x(t),z(t))] - \log(\mathbb{E}_{p(X(t))p(Z(t))}[e^{T_{\psi}(x(t),z(t))}]))$

Method

- We intend to select both representative and diverse triads to replay for overcoming catastrophic forgetting.
- We develop a greedy algorithm to find its approximate solution, and give a theoretical guarantee to the lower bound of the approximation ratio.

$$\mathcal{I}_{loss}(g_k^c, \theta) = \left. \frac{\mathrm{d}\mathcal{L}(G_k, \theta_{\varepsilon, g_k^c})}{\mathrm{d}\varepsilon} \right|_{\varepsilon=0} = \nabla_{\theta}\mathcal{L}(G_k, \theta)^{\top} \left. \frac{\mathrm{d}\hat{\theta}_{\varepsilon, g_k^c}}{\mathrm{d}\varepsilon} \right|_{\varepsilon=0} = -\nabla_{\theta}\mathcal{L}(G_k, \theta)^{\top} H_{\theta}^{-1} \nabla_{\theta}\mathcal{L}(g_k^c, \theta)$$

$$S_k^c = \arg \max_{\{g_{k,1}^c, \cdots, g_{k,M}^c\}} F(S_k^c) = \arg \max_{\{g_{k,1}^c, \cdots, g_{k,M}^c\}} \left(\sum_{i=1}^M \mathcal{R}(g_{k,i}^c) + \gamma \frac{|\bigcup_{i=1}^M \mathcal{C}(g_{k,i}^c)|}{|N_k^c|} \right)$$

Experiment

• Our method outperform other baselines by a large margin.

Method	Reddit		Yelp		TaoBao	
	AP(↑)	$AF(\downarrow)$	AP(↑)	$AF(\downarrow)$	AP(↑)	$AF(\downarrow)$
ContinualGNN ER-GAT TWC-GAT	$52.17 \pm 2.46 \\ 52.03 \pm 2.59 \\ 52.88 \pm 0.53$	$\begin{array}{c} 25.59 \pm 5.39 \\ 22.67 \pm 3.30 \\ 19.60 \pm 3.64 \end{array}$	$\begin{array}{c} 49.73 \pm 0.27 \\ 62.05 \pm 0.70 \\ 60.90 \pm 3.74 \end{array}$	$\begin{array}{c} 28.76 \pm 1.52 \\ 18.91 \pm 1.09 \\ 16.92 \pm 0.63 \end{array}$	$\begin{array}{c} 58.39 \pm 0.24 \\ 70.09 \pm 0.88 \\ 59.91 \pm 1.71 \end{array}$	$\begin{array}{c} 47.03 \pm 0.50 \\ 23.24 \pm 0.36 \\ 42.78 \pm 1.39 \end{array}$
TGAT TGAT+EWC TGAT+iCaRL TGAT+BiC	$\begin{array}{c} 48.47 \pm 1.81 \\ 50.16 \pm 2.45 \\ 54.50 \pm 2.04 \\ 54.61 \pm 0.89 \end{array}$	$\begin{array}{c} 31.03 \pm 4.48 \\ 28.27 \pm 4.00 \\ 27.66 \pm 1.11 \\ 25.42 \pm 2.72 \end{array}$	$\begin{array}{c} 64.89 \pm 1.27 \\ 66.58 \pm 3.11 \\ 71.71 \pm 2.48 \\ 74.73 \pm 3.54 \end{array}$	$\begin{array}{c} 27.31 \pm 3.99 \\ 25.48 \pm 1.75 \\ 17.56 \pm 2.46 \\ 16.42 \pm 4.41 \end{array}$	$\begin{array}{c} 60.62 \pm 0.23 \\ 64.03 \pm 0.62 \\ 73.74 \pm 1.40 \\ 74.05 \pm 0.48 \end{array}$	$\begin{array}{c} 43.35 \pm 0.77 \\ 38.26 \pm 1.20 \\ 23.90 \pm 2.04 \\ 23.27 \pm 0.65 \end{array}$
TGN TGN+EWC TGN+iCaRL TGN+BiC	$\begin{array}{c} 47.49 \pm 0.48 \\ 49.45 \pm 1.45 \\ 50.86 \pm 4.83 \\ 53.16 \pm 1.53 \end{array}$	$\begin{array}{c} 32.06 \pm 1.91 \\ 31.74 \pm 1.11 \\ 31.01 \pm 2.78 \\ 26.83 \pm 0.95 \end{array}$	$56.24 \pm 1.65 \\ 60.83 \pm 3.55 \\ 73.34 \pm 1.99 \\ 73.98 \pm 2.07$	$\begin{array}{c} 41.27 \pm 2.30 \\ 35.73 \pm 3.48 \\ 15.43 \pm 0.93 \\ 16.79 \pm 2.90 \end{array}$	$\begin{array}{c} 65.89 \pm 1.20 \\ 68.89 \pm 2.09 \\ 77.42 \pm 0.80 \\ 77.40 \pm 0.80 \end{array}$	36.15 ± 1.55 32.08 ± 3.88 19.57 ± 1.29 18.63 ± 1.69
TREND TREND+EWC TREND+iCaRL TREND+BiC	$\begin{array}{c} 49.61 \pm 2.92 \\ 53.12 \pm 3.30 \\ 52.53 \pm 3.67 \\ 54.22 \pm 0.56 \end{array}$	$\begin{array}{c} 28.68 \pm 4.20 \\ 25.70 \pm 3.08 \\ 30.63 \pm 0.18 \\ 22.42 \pm 3.15 \end{array}$	$57.28 \pm 2.83 \\ 65.45 \pm 4.79 \\ 69.93 \pm 5.55 \\ 71.15 \pm 2.42$	$\begin{array}{c} 37.48 \pm 3.26 \\ 26.80 \pm 4.98 \\ 15.81 \pm 7.48 \\ 12.78 \pm 5.12 \end{array}$	$\begin{array}{c} 61.02 \pm 0.16 \\ 62.72 \pm 1.18 \\ 74.49 \pm 0.05 \\ 75.13 \pm 1.06 \end{array}$	$\begin{array}{c} 42.44 \pm 0.14 \\ 40.00 \pm 2.09 \\ 23.27 \pm 0.25 \\ 21.70 \pm 0.63 \end{array}$
OTGNet (Ours)	$\textbf{73.88} \pm 4.55$	19.25 ± 5.10	$\textbf{83.78} \pm 1.06$	$\textbf{4.98} \pm 0.46$	79.92 ± 0.12	12.82 ± 0.61

Table 2: Comparisons (%) of our method with baselines. The bold represents the best in each column.

Experiment

• From ablation study, we can find that each component in our method is effective.

	<i>.</i>		1 1 5			
Setting	Reddit		Yelp		TaoBao	
Secting	AP(†)	AF(↓)	AP(↑)	AF(↓)	AP(↑)	$AF(\downarrow)$
OTGNet-w.oIB	54.10 ± 2.01	34.00 ± 1.63	76.93 ± 5.14	14.96 ± 5.61	79.00 ± 0.37	13.41 ± 0.57
OTGNet-w.oprop	54.67 ± 2.05	28.73 ± 2.63	75.67 ± 1.69	12.87 ± 1.19	79.07 ± 0.02	14.48 ± 0.34
OTGNet-GBK	58.79 ± 1.08	25.22 ± 2.22	77.03 ± 2.99	9.79 ± 1.15	77.73 ± 0.27	15.49 ± 0.34
OTGNet	$\textbf{73.88} \pm 4.55$	19.25 ± 5.10	83.78 ± 1.06	$\textbf{4.98} \pm 0.46$	$\textbf{79.92} \pm 0.12$	12.82 ± 0.61

Table 3: Ablation study of our proposed information bottleneck based propagation mechanism.

Table 4: Results of triad selection strategy on the three datasets.

Setting	Reddit		Ye	elp	TaoBao	
6	AP(↑)	$AF(\downarrow)$	$AP(\uparrow)$	AF(↓)	$AP(\uparrow)$	$AF(\downarrow)$
OTGNet-w.otriad	60.81 ± 4.46	34.94 ± 4.73	69.28 ± 1.73	23.79 ± 1.75	67.05 ± 0.44	31.44 ± 0.41
OTGNet-random	69.66 ± 3.81	23.24 ± 3.83	78.76 ± 2.62	9.19 ± 1.65	79.09 ± 0.36	13.89 ± 0.45
OTGNet-w.odiversity	71.06 ± 5.73	22.96 ± 6.91	80.76 ± 2.60	9.91 ± 3.83	78.84 ± 0.46	13.87 ± 1.18
OTGNet	$\textbf{73.88} \pm 4.55$	$\textbf{19.25} \pm 5.10$	$\textbf{83.78} \pm 1.06$	$\textbf{4.98} \pm 0.46$	$\textbf{79.92} \pm 0.12$	12.82 ± 0.61

Table 5: Results of evolution pattern preservation on the three datasets.							
Setting	Reddit		Yelp		TaoBao		
	AP(↑)	$AF(\downarrow)$	$AP(\uparrow)$	$AF(\downarrow)$	AP(↑)	$AF(\downarrow)$	
OTGNet-w.opattern OTGNet					$\begin{array}{c} 79.01 \pm 0.19 \\ \textbf{79.92} \pm 0.12 \end{array}$		

Thanks for your attention