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We introduce a dataset for neural architecture design and
robustness to provide the research community with more
resources for analyzing what constitutes robust networks.  
We borrow one of the most commonly considered search
spaces for neural architecture search (NAS) for image
classification, NAS-Bench-201, to evaluate all 6,466 unique
architectures on a range of adversarial attacks and corruption
types for our dataset.
We present three use cases:
(1) benchmark robustness measurements based on Jacobian
(1) and Hessian matrices for their robustness predictability
(2) perform neural architecture search on robust accuracies
(3) provide an analysis of how the architectural design choice 
(3) affect robustness

We collect evaluations on different adversarial attacks, namely FGSM, PGD, APGD, and Square Attack on the L∞ norm.

Summary
The plots here show aggregated evaluation results on the
mentioned attacks on CIFAR-10 w.r.t. accuracy. Growing gaps
between mean and max accuracies indicate that architecture
design has an impact on robust performances. 

To evaluate all unique NAS-Bench-201 architectures on common corruptions, we evaluate them on the benchmark data 
provided by Hendrycks & Dietterich (2019). 
Two datasets are available: CIFAR10-C, which is a corrupted version of CIFAR-10, and CIFAR-100-C, which is a 
corrupted version of CIFAR-100. Both datasets are perturbed with a total of 15 corruptions at 5 severity levels. The 
training procedure of NAS-Bench-201 only augments the training data with random flipping and random cropping. 
Hence, no influence should be expected of the training augmentation pipeline on the performance of the networks to 
those corruptions. We evaluate each of the 15 · 5 = 75 datasets individually for each network.

Summary
The plots depict mean accuracies for different exemplary 
corruptions at increasing severity levels. Similar to the results for 
adversarial attacks, a growing gap between mean and max 
accuracies for most of the corruptions can be observed, which
indicates towards architectural influences on robustness to 
common corruptions.

We perform different SoTA NAS algorithms
on the clean accuracy and the FGSM (ε = 1) 
robust accuracy  and evaluate the best found 
architectures on all evaluated adversarial 
attacks. Although clean accuracy is reduced,
the overall robustness to all adversarial 
attacks improves when the search is 
performed on FGSM (ε = 1) accuracy. Local 
Search achieves the best performance,
which indicates that localized changes to an 
architecture design seem to be able to 
improve network robustness.

Same parameter count on CIFAR-10
Networks with parameter count 18 (408 
instances in total having exactly 2 times 3×3 
convolutions and no 1×1 convolutions in a 
cell) are highlighted in orange. As we can 
see, there is a large range of mean 
adversarial accuracies [0.21, 0.4] on 
CIFAR-10 for these networks, showing the 
potential of doubling the robustness of an 
architecture design with the same parameter 
budget by carefully crafting its topology.

The top-20 performing architectures (color-
coded, one operation for each edge) with  
parameter count 18 have no convolutions on 
edges 2 and 4, and no dropping or skipping 
of edge 1. In the case of edge 4, it seems 
that a single convolutional layer connecting 
input and output of the cell increases 
sensitivity of the network. Hence, most of the 
top-20 robust architectures stack 
convolutions. 

Visualization of the best architectures in
the NAS-Bench-201 search space in 
terms of clean accuracy, mean 
adversarial accuracy, and mean common 
corruption accuracy on CIFAR-10 and
their respective edit distances. 

Confidences
Mean prediction confidence scores on 
FGSM-attacked CIFAR-10 images for 
different ε (on top of points) for all non-
isomorphic networks in NAS-Bench-201.
Networks become less confident in their 
prediction if their prediction is correct when ε 
increases. Networks become more confident 
in their prediction if their prediction is
incorrect, however, only up to a certain ε 
value. When ε further increases, confidence 
drops again

• We showed that these architecture measurements are a good first approach for the architecture’s robustness, but have to
••be taken with caution when the perturbation increases.
• NAS directly on the robust accuracies indeed finds more robust architectures for different adversarial attacks.
• An initial analysis of architectural design showed that it is possible to improve robustness of networks with the same
••number of parameters by carefully designing their topology.
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NAS-Bench-201 (Dong & Yang, 2020) is a cell-based
architecture search space. Each cell has in total 4 nodes
and 6 edges. The nodes in this search space correspond
to the architecture's feature maps and the edges
represent the architecture's operation, which are chosen
from an operation set. This search space contains in total
15,625 architectures, from which only 6,466 are unique,
since the operations skip and zeroize can cause
isomorphic cells. Each architecture is trained on three
different image datasets for 200 epochs: CIFAR-10/100
and ImageNet16-120. We evaluate all 3 · 6,466 = 19,398
pretrained networks for different adversarial attacks and
common corruptions. We collect:
(a) accuracy,
(b) average prediction confidences, and
(c) confusion matrices.

Jacobian
Hoffman et al. (2019) introduce an efficient Jacobian regularization method to improve the robustness of neural
architectures. The goal is to minimize the network's output change in case of perturbed input data, by minimizing the
Frobenius norm of the network's Jacobian matrix. This is based on the fact that the larger the Jacobian components, the
larger is the output change for perturbed input data, and thus the more unstable is the neural network against this
perturbed input data. In order to increase the stability of the network, Hoffman et al. (2019) proposes to decrease the
Jacobian components by minimizing the square of the Frobenius norm of the Jacobian. The smaller the Frobenius norm of
the Jacobian of a network, the more robust the network is supposed to be.

Hessian 
Zhao et al. (2020) investigate the loss landscape of a regular neural network and robust neural network against adversarial
attacks. They provide theoretical justification that the adversarial loss is highly correlated with the largest eigenvalue of the
input Hessian matrix of the clean input data. Therefore the eigenspectrum of the Hessian matrix of the regular network can
be used for quantifying the robustness: large Hessian spectrum implies a sharp minimum resulting in a more vulnerable
neural network against adversarial attacks. Whereas in the case of a neural network with small Hessian spectrum,
implying a flat minimum, more perturbation on the input is needed to leave the minimum.

Summary
We can observe that the Jacobian-based measurement correlates well with rankings after attacks by FGSM and smaller ε
values for other attacks. However, this is not true anymore when ε increases, especially in the case of APGD. We can
observe similar behaviour for the Hessian-based measurement.

Visit our project page
for code and data
(it's interactive!)


