Learning with Auxiliary Activation for Memory-Efficient Training

Sunghyeon Woo, Dongsuk Jeon {wsh0917, djeon1@snu.ac.kr} Seoul National University

< Rapid growth of model parameters (Yu et al, 2021) >

Backpropagation

3

Activation Recomputation

ctivations for back	are stored i	n memory
	ward propag	
_arge men	nory is requ	ired!
_arge men	nory is requ	ired!
arge men	nory is requ	ired!
arge men	nory is requ	ired!

Backpropagation

Activation Recomputation

Activation Compression Training

4

Backpropagation

Activation Recomputation

Activation Compression Training

5

Auxiliary Activation Learning

 a_l : Auxiliary Activation

Auxiliary Activation Learning

Forward Propagation

: Add auxiliary activation to output activation of layer and store auxiliary activation instead of actual activation

Backward Propagation

: Use auxiliary activation for updating weights

Auxiliary Activation Learning

Conventional memory-saving algorithms

Auxiliary Activation Learning

Auxiliary Activation Learning

Conventional memory-saving algorithms

Auxiliary Activation Learning

Learing criterion for alternative activation

Theorem 1. Let weight updates W_{l+1} is calculated by alternative activation r_l instead of actual activation h_l . In this case, if the gradient of loss function f(W) is L-Lipschitz continuous, learnin rate η satisfies $0 \le \eta \le \frac{1}{L}$, and $r_l^T (2h_l - r_l) \ge 0$, then loss function f(W) is converged.

Learing Indicator (LI)
$$\equiv \frac{\boldsymbol{r}_l^T (2\boldsymbol{h}_l - \boldsymbol{r}_l)}{\|\boldsymbol{h}_l\|^2}$$

- LI > 0: The loss is converged. The larger Learning indicator is, the better loss converges.
- $LI \leq 0$: The loss is diverged.

Two candidates of Auxiliary Activation

 h_l : Auxiliary Residual Activation (ARA)

Train ResNet-18 on Tiny ImageNet

Two candidates of Auxiliary Activation

Figure 3: Training ResNet-50 using Auxiliary Residual Activation (ARA).

13

Table 2: Test accuracy, training memory with compression rate (bracketed), and training time (italic) of one epoch in ResNet training on ImageNet with 512 batch size and six RTX-3090 GPUs.

Models	Baseline	Ξi	ARA (2,2,2,2)	ARA (3,4,2,2)	ARA (3,4,4,2)	ARA (3,4,6,2)	Save memory
		76.01	75.97	75.89	75.62	75.23	— without speed reduction
	BP	44.6 GB	(1.12x)	(1.2x)	(1.21x)	(1.22x)	Speca readener
		17m 35s	17m 59s	17m 54s	17m 55s	18m 3s	
		76.01	75.97	75.89	75.62	75.23	
ResNet-50	GCP	(2.2x)	(2.88x)	(3.44x)	(3.54x)	(3.66x)	
		36m 42s	37m 2s	37m 9s	36m 58s	37m 14s	
		75.96	75.93	75.67	75.51	75.12	
	ActNN	(11.8x)	(14x)	(14.6x)	(14.8x)	(15.01x)	
		48m 48s	48m 48s	48m 10s	47m 58s	47m 08s	
ResNet-152		77.38	77.14	77.41	76.84	76.64	_
	BP	90.2 GB	(1.16x)	(1.21x)	(1.27x)	(1.29x)	
		35m 37s	36m 17s	36m 24s	36m 11s	36m 30s	
		77.38	77.14	77.41	76.84	76.64	_
	GCP	(2.1x)	(2.92x)	(3.26x)	(3.75x)	(3.95 x)	
		1h 18m	1h 19m	1h 19m	1h 19m	1h 20m	

Table 2: Test accuracy, training memory with compression rate (bracketed), and training time (italic) of one epoch in ResNet training on ImageNet with 512 batch size and six RTX-3090 GPUs.

Models	Baseline	=:	ARA (2,2,2,2)	ARA (3,4,2,2)	ARA (3,4,4,2)	ARA (3,4,6,2)	
		76.01	75.97	75.89	75.62	75.23	
	BP	44.6 GB	(1.12x)	(1.2x)	(1.21x)	(1.22x)	
		17m 35s	17m 59s	17m 54s	17m 55s	18m 3s	
		76.01	75.97	75.89	75.62	75.23	
ResNet-50	GCP	(2.2x)	(2.88x)	(3.44x)	(3.54x)	(3.66x)	
		36m 42s	37m 2s	37m 9s	36m 58s <	37m 14s	Orthogonality:
		75.96	75.93	75.67	75.51	75.12	maximize
	ActNN	(11.8x)	(14x)	(14.6x)	(14.8x)	(15.01x)	memory saving
		48m 48s	48m 48s	48m 10s	47m 58s	47m 08s	
ResNet-152 -		77.38	77.14	77.41	76.84	76.64	
	BP	90.2 GB	(1.16x)	(1.21x)	(1.27x)	(1.29x)	
		35m 37s	36m 17s	36m 24s	36m 11s <	36m 30s	
		77.38	77.14	77.41	76.84	76.64	
	GCP	(2.1x)	(2.92x)	(3.26x)	(3.75x)	(3.95 x)	
		1h 18m	1h 19m	1h 19m	1h 19m	1h 20m	

Figure 5: Transformer-like networks trained using Auxiliary Sign Activations (ASA). MHA and FFN represent multihead attention and feedforward network, respectively.

Table 3: Test/validation scores, compression rate (bracketed), and training time (italic) of one epoch of Transformer, BERT, ViT, and MLP-Mixer training with 4096, 32, 512, and 256 batch sizes, respectively.

Models	Dataset	Baseline		ASA1	ASA2	ASA3	ASA4
		1000	35.23	35.44	34.87	34.9	35.02
	BP	3.6 GB	(1.1x)	(1.1x)	(1.2x)	(1.3x)	
Trans-	Trans-		3m 15s	3m 21s	3m 23s	3m 26s	3m 38s
former	IWSLI		35.45	34.74	35.19	35.11	34.84
		Mesa	(1.6x)	(1.7x)	(1.7x)	(1.7x)	(1.8x)
			5m 52s	5m 47s	5m 44s	5m 36s	5m 8s
			88.56	88.69	88.23	88.97	88.32
		BP	10.9 GB	(1.1x)	(1.2x)	(1.3x)	(1.3x)
	MBBC		1m 28s	1m 29s	1m 30s	1m 30s	1m 31s
	MIKPC		88.3	88.35	88.51	88.25	88.23
		Mesa	(2.1x)	(2.3x)	(2.4x)	(2.4x)	(2.5x)
BERT-		Charles and a second	2m 8s	2m 5s	2m 3s	2m 1s	1m 55s
Large			86.52	86.65	86.49	86.42	86.39
		BP	10.9 GB	(1.1x)	(1.2x)	(1.3x)	(1.3x)
	MNLL		2h 37m	2h 40m	2h 40m	2h 41m	2h 41m
	WINLI	Mesa	86.32	86.37	86.29	86.54	86.17
			(2.1x)	(2.3x)	(2.4x)	(2.4x)	(2.5x)
			3h 51m	3h 39m	3h 35m	3h 32m	3h 24m
		BP	92.93	92.81	92.84	92.97	92.65
			48 GB	(1.3x)	(1.5x)	(1.5x)	(1.6x)
ViT-	CIEAP 100		2m 46s	2m 48s	2m 50s	2m 51s	2m 52s
Large	CIFAR-100		92.89	92.75	92.72	92.95	92.84
		Mesa	(3.0x)	(3.5x)	(3.6x)	(3.7x)	(4.3x)
			4m 46s	4m 15s	3m 57s	3m 49s	3m 33s
Minner			91.62	91.45	91.72	91.66	91.91
Mixer-	CIFAR-100	BP	86.8 GB	(1.3x)	(1.4x)	(1.7x)	(2.0x)
Large			3m 39s	3m 47s	3m 50s	3m 57s	4m 1s

Table 4: Largest models that can be trained using a single GPU with 24GB memory. (ResNet: depth = number of layers, width = width of the first bottleneck block. BERT-Large: depth = number of transformer blocks, width = hidden size.)

Models	ResNet				BERT-Large			
Learning rule	BP	ARA	ActNN	ARA+ActNN	BP	ASA4	Mesa	Mesa+ActNN
Depth	146	165	622	718	50	60	64	70
Width	62	76	214	238	1600	1728	1792	1856

Thank you very much!