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< Rapid growth of model parameters (Yu et al, 2021) >

Model size

Accuracy

Training memory

1024 x A100 Requires …
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Activations are stored in memory 
for backward propagation...

Large memory is required!dddd



Intorduction

4

Memory

Activation Activation Activation 

Forward propagation

Backward propagation

Weight Weight 

save for backward

load

Backpropagation

Backward propagation

Forward propagation

Activation Recomputation

Memory

Act Act Act

Weight Weight 

Activation Compression Training

Memory

Backward propagation

Forward propagation

Act

quantize quantize

quantize quantize

Act

Act Act



Intorduction

5

Memory

Activation Activation Activation 

Forward propagation

Backward propagation

Weight Weight 

save for backward

load

Backpropagation

Backward propagation

Forward propagation

Activation Recomputation

Memory

Act Act Act

Weight Weight 

Activation Compression Training

Memory

Backward propagation

Forward propagation

Act

quantize quantize

dequantize dequantize

Act

Act Act



Intorduction

6

Memory

Activation Activation Activation 

Forward propagation

Backward propagation

Weight Weight 

save for backward

load

Backpropagation

Backward propagation

Forward propagation

Activation Recomputation

Memory

Act Act Act

Weight Weight 

Activation Compression Training

Memory

Backward propagation

Forward propagation

Act

quantize quantize

quantize quantize

Act

Act Act

Additional process 
in forward or backward propagation...

Tranining speed is reduced!dddd
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Auxiliary Activation Learning

 Forward Propagation

: Add auxiliary activation to output activation of layer 

and store auxiliary activation instead of actual activation

 Backward Propagation

: Use auxiliary activation for updating weights
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Conventional memory-saving algorithms
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We can reduce training memory
without additional processes

There is no speed reduction!dddd

dddd

Auxiliary Activation Learning
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Theorem 1. Let weight updates 𝑾 is calculated by alternative activation 𝒓 instead of actual activation 𝒉 .

In this case, if the gradient of loss function 𝑓(𝑾) is L-Lipschitz continuous, learnin rate 𝜂 satisfies 0 ≤  𝜂 ≤ , 

and 𝒓 (2𝒉 −𝒓 ) ≥ 0, then loss function 𝑓(𝑾) is converged.

 𝑳𝑰 > 𝟎 : The loss is converged. The larger Learning indicator is, the better loss converges. 

 𝑳𝑰 ≤ 𝟎 : The loss is diverged.
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𝒉 : Auxiliary Residual Activation (ARA)
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Train ResNet-18 on Tiny ImageNet

BP : 58.43%
ARA : 58.56%
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𝒔 : Auxiliary Sign Activation (ASA)
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Train ResNet-18 on Tiny ImageNet

BP : 58.43%
ARA : 57.01%
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Save memory
without 

speed reduction
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Orthogonality:
maximize 

memory saving
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