

MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer

Microsoft Research

Previous Mixed augmentation methods for Vision Transformer

Shortcomings of TransMix

- ViTs has long-range dependence, region-based mixed images may provide insufficient regularization.
- Cropped patches with sharp rectangular borders are clearly distinguishable from the background (viewed as red patches), resulting in a basis weight of attention regardless of whether the patch contains useful information.

Attention maps may not always be reliable during the training process.

- At the beginning of the training, the model has no representation capability, and the attention maps gained are unreliable.
- it is possible to obtain difficult samples using massive data augmentation strategies, and the attention map is also unreliable.

MixPro

How to get progressive factor α ?

Setp 1

$$\widetilde{y} = \lambda_{area} \odot y_i + (\mathbf{1} - \lambda_{area}) \odot y_j$$
Setp 2
$$\boldsymbol{\alpha} = \mathbf{d}(\mathbf{p}, \widetilde{\mathbf{y}}) = \frac{\mathbf{p} \cdot \widetilde{\mathbf{y}}^{\top}}{||\mathbf{p}|| \cdot ||\widetilde{\mathbf{y}}||},$$

$$\mathbf{a} = \mathbf{d}(\mathbf{p}, \widetilde{\mathbf{y}}) = \frac{\mathbf{p} \cdot \widetilde{\mathbf{y}}^{\top}}{||\mathbf{p}|| \cdot ||\widetilde{\mathbf{y}}||},$$

$$\mathbf{a} = \mathbf{d}(\mathbf{p}, \widetilde{\mathbf{y}}) = \frac{\mathbf{p} \cdot \widetilde{\mathbf{y}}^{\top}}{||\mathbf{p}|| \cdot ||\widetilde{\mathbf{y}}||},$$

$$\mathbf{a} = \mathbf{d}(\mathbf{p}, \widetilde{\mathbf{y}}) = \frac{\mathbf{p} \cdot \widetilde{\mathbf{y}}^{\top}}{||\mathbf{p}|| \cdot ||\widetilde{\mathbf{y}}||},$$

$$\mathbf{a} = \mathbf{d}(\mathbf{p}, \widetilde{\mathbf{y}}) = \frac{\mathbf{p} \cdot \widetilde{\mathbf{y}}^{\top}}{||\mathbf{p}|| \cdot ||\widetilde{\mathbf{y}}||},$$

$$\mathbf{a} = \mathbf{d}(\mathbf{p}, \widetilde{\mathbf{y}}) = \frac{\mathbf{p} \cdot \widetilde{\mathbf{y}}^{\top}}{||\mathbf{p}|| \cdot ||\widetilde{\mathbf{y}}||},$$

$$\mathbf{a} = \mathbf{d}(\mathbf{p}, \widetilde{\mathbf{y}}) = \frac{\mathbf{p} \cdot \widetilde{\mathbf{y}}^{\top}}{||\mathbf{p}|| \cdot ||\widetilde{\mathbf{y}}||},$$

$$\mathbf{a} = \mathbf{d}(\mathbf{p}, \widetilde{\mathbf{y}}) = \frac{\mathbf{p} \cdot \widetilde{\mathbf{y}}^{\top}}{||\mathbf{p}|| \cdot ||\widetilde{\mathbf{y}}||},$$

$$\mathbf{a} = \mathbf{d}(\mathbf{p}, \widetilde{\mathbf{y}}) = \frac{\mathbf{p} \cdot \widetilde{\mathbf{y}}^{\top}}{||\mathbf{p}|| \cdot ||\widetilde{\mathbf{y}}||},$$

$$\mathbf{a} = \mathbf{d}(\mathbf{p}, \widetilde{\mathbf{y}}) = \frac{\mathbf{p} \cdot \widetilde{\mathbf{y}}^{\top}}{||\mathbf{p}|| \cdot ||\widetilde{\mathbf{y}}||},$$

$$\mathbf{a} = \mathbf{d}(\mathbf{p}, \widetilde{\mathbf{y}}) = \frac{\mathbf{p} \cdot \widetilde{\mathbf{y}}^{\top}}{||\mathbf{p}|| \cdot ||\widetilde{\mathbf{y}}||},$$

$$\mathbf{a} = \mathbf{d}(\mathbf{p}, \widetilde{\mathbf{y}}) = \frac{\mathbf{p} \cdot \widetilde{\mathbf{y}}^{\top}}{||\mathbf{p}|| \cdot ||\widetilde{\mathbf{y}}||},$$

$$\mathbf{a} = \mathbf{d}(\mathbf{p}, \widetilde{\mathbf{y}}) = \frac{\mathbf{p} \cdot \widetilde{\mathbf{y}}^{\top}}{||\mathbf{p}|| \cdot ||\widetilde{\mathbf{y}}||},$$

$$\mathbf{a} = \mathbf{d}(\mathbf{p}, \widetilde{\mathbf{y}}) = \frac{\mathbf{p} \cdot \widetilde{\mathbf{y}}^{\top}}{||\mathbf{p}|| \cdot ||\widetilde{\mathbf{y}}||},$$

Experiments

Table 1: Compared to TransMix, MixPro provides better performance on a wide range of model variants, e.g. DeiT, PVT, CaiT, XCiT, Swin on ImageNet-1k classification. All the baselines are reported in TransMix (Chen et al., 2021).

Models	Params	#FLOPs	Top-1 Acc(%)	Top-1 Acc(9 +TransMix	%) Top-1 Acc(%) +MixPro
DeiT-T (Touvron et al., 2021a)	5.7M	1.6G	72.2	72.6	73.8+(+1.2)
PVT-T (Wang et al., 2021)	13.2M	1.9G	75.1	75.5	76.7+(+1.2)
XCiT-T (Ali et al., 2021)	12M	2.3G	79.4	80.1	81.2+(+1.1)
CA-Swin-T (Liu et al., 2021)	28.3M	4.2G	81.6	81.8	82.8+(+1.0)
CaiT-XXS	17.3M	3.8G	79.1	79.8	80.6+(+0.8)
DeiT-S (Touvron et al., 2021a)	22.1M	4.7G	79.8	80.7	81.3+(+0.6)
PVT-S (Wang et al., 2021)	24.5M	3.8G	79.8	80.5	81.2+(+0.7)
XCiT-S (Ali et al., 2021)	26M	4.8G	82.0	82.3	82.9+(+0.6)
CA-Swin-S (Liu et al., 2021)	49.6M	8.5G	82.8	83.2	83.7+(+0.5)
PVT-M (Wang et al., 2021)	44.2M	6.7G	81.2	82.1	82.7+(+0.6)
PVT-L (Wang et al., 2021)	61.4M	9.8G	81.7	82.4	82.9+(+0.5)
XCiT-M (Ali et al., 2021)	84M	16.2G	82.7	83.4	84.1+(+0.7)
DeiT-B (Touvron et al., 2021a)	86.6M	17.6G	81.8	82.4	82.9+(+0.5)
XCiT-L (Ali et al., 2021)	189M	36.1G	82.9	83.8	84.7+(+0.9)

Experiments

pretrained	Backbone	Decoder	mIoU	+MS
ResNet101	ResNet101	Deeplabv3+	47.3	48.5
DeiT-S +TransMix +MixPro	DeiT-S	Linear	49.1 49.7 50.3	49.6 50.3 50.9
DeiT-S +TransMix +MixPro	DeiT-S	Segmenter	49.7 50.6 51.1	50.5 51.2 51.6

Semantic Segmentation

Backbone	#Params	Obje AP^b	ect dete AP_{50}^b	$\begin{array}{c} \text{ction} \\ 0 & AP_{75}^b \end{array} \right $	Instan AP_m	the segnation AP_5^n	mentation $_{0}^{n} AP_{75}^{m}$
ResNet50	44.2M	38.0	58.6	41.4	34.4	57.1	36.7
ResNet101	63.2M	40.4	61.1	44.2	36.4	57.7	38.8
PVT-S	44.1M	40.4	62.9	43.8	37.8	60.1	40.3
TransMix-PVT-S	44.1M	40.9	63.8	44.0	38.4	60.7	41.3
MixPro-PVT-S	44.1M	41.4	64.2	44.4	38.9	61.1	41.7

Objection detection and Instance Segmentation

Summary

- We propose a new data augmentation method, MixPro, to address the shortcomings of TransMix from the perspective of image space and label space, respectively.
- From the perspective of image space, MixPro ensures that each image patch comes from only one image and uses a global mixed mask to provide more regularization. From the perspective of label space, MixPro utilizes a progressive factor to dynamically re-weight the attention weight of the mixed attention label.
- In experiments, we demonstrate extensive evaluations of MixPro on various ViT-based models and downstream tasks. It boosts Deit-T achieving 73.8% on ImageNet-1K. Furthermore, compared to TransMix, MixPro also shows stronger robustness on three different benchmarks.

Code link: https://github/fistyee/MixPro

Thank you