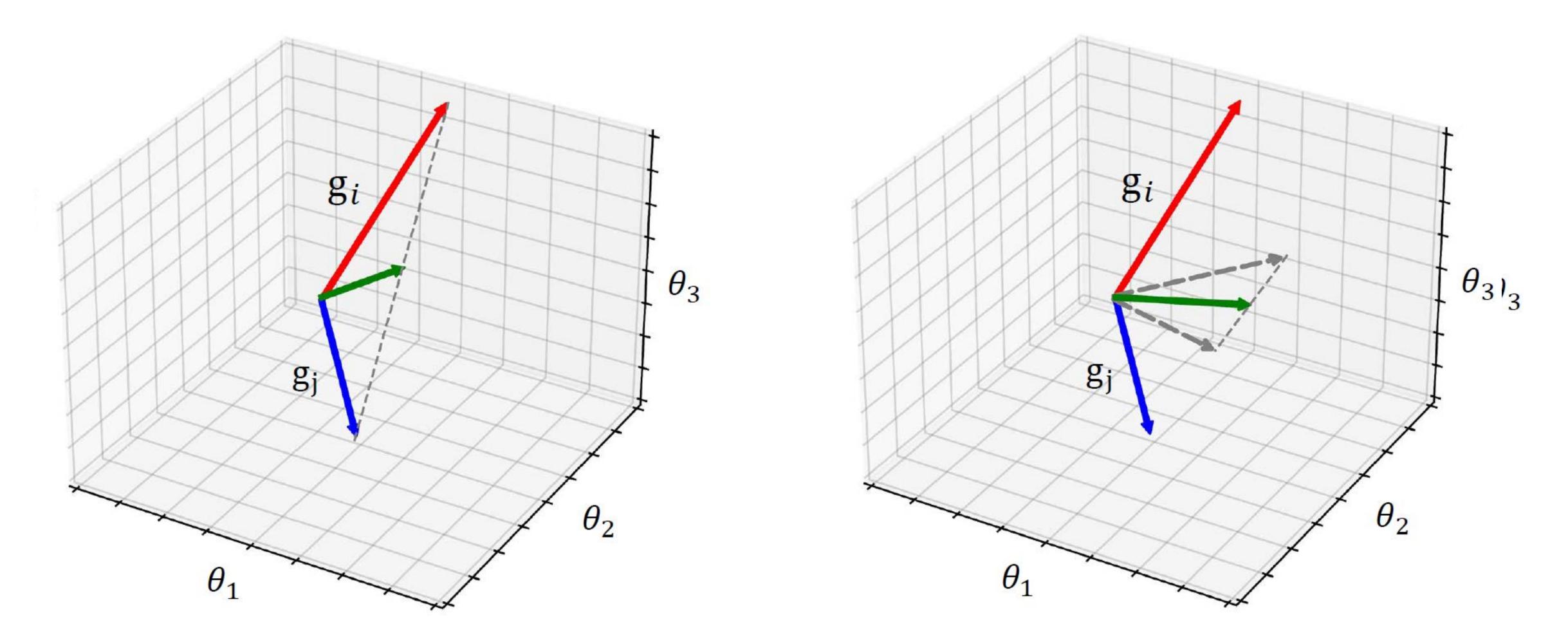
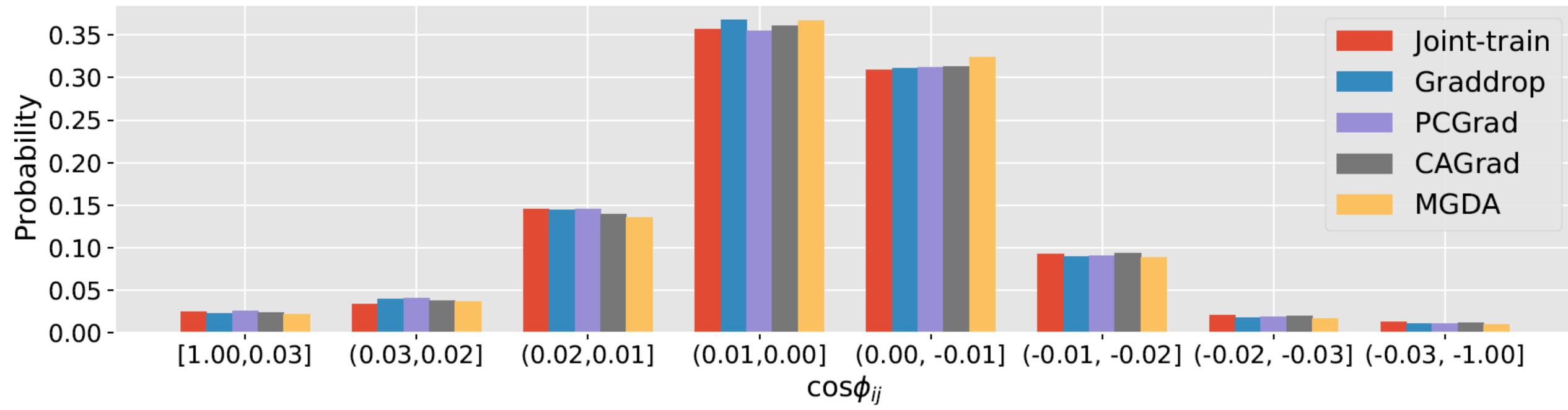
Recon: Reducing Conflicting Gradients From the Root For Multi-Task Learning


ICLR 2023

May 1, 2023

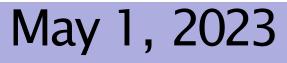
Main Challenges of Multi-Task Learning

Gradient Descent

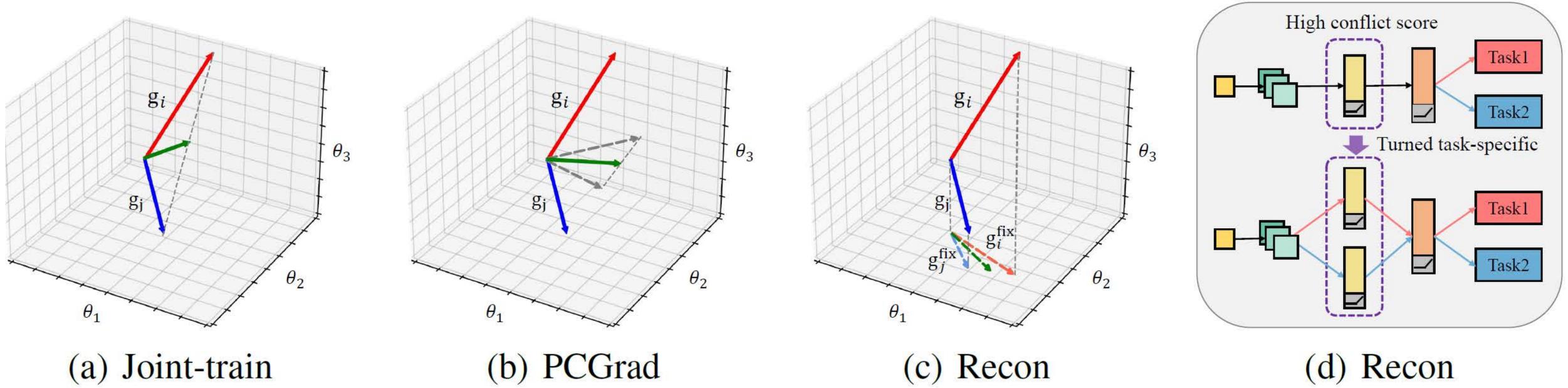

ICLR 2023

Definition 1 (Conflicting Gradients). The gradients g_i of task \mathcal{T}_i and g_i of task \mathcal{T}_i are said to be conflicting with each other of $\cos \phi_{ij} < 0$, where ϕ_{ij} is the angle between g_i and g_j .

PCGrad


Gradient Surgery Cannot Reduce Conflicting Gradients

ICLR 2023


Figure 1: The distributions of gradient conflicts (in terms of $\cos \phi_{ij}$) of the joint-training baseline and state-of-the-art gradient manipulation methods on Multi-Fashion+MNIST benchmark.

Our Proposed Method: Recon

ICLR 2023

Figure 2: (a) In joint-training, the update vector is dominated by g_i due to the conflicting gradients. (b) PCGrad use the average gradients of the projected gradients as the update vector to reduce the influence of conflicting gradients. (c) Our approach Recon finds the parameters contributing most (e.g., θ_3) to gradient conflicts and turn them into task specific ones. In effect, it performs an orthographic/coordinate projection of conflicting gradients to the space of the rest parameters (e.g., θ_1 and θ_2) such that the projected gradients g_i^{fix} and g_i^{fix} . (d) Illustration of Recon turning a shared layer with high conflict score to task-specific layers.

May 1, 2023

4/14

Our Proposed Method: Recon

Definition 2 (Layer-wise Conflicting Gradients). The gradients $g_i^{(k)}$ and $g_i^{(k)}$ $(i \neq j)$ are said to be conflicting with each other of $\cos \phi_{ij}^{(k)} < 0$, where $g_i^{(k)}$ and $g_i^{(k)}$ denote the gradients of tasks \mathcal{T}_i and \mathcal{T}_i w.r.t. the k^{th} shared layer θ_{sh}^k respectively.

Definition 3 (S-Conflict Scores). For any $-1 < S \leq 0$, the S-conflict score for the k^{th} shared layer is the number of different pairs $(i,j)(i \neq j)$ s.t. $\cos \phi_{ii}^{(k)}$, denoted as $s^{(k)}$.

ICLR 2023

5/14

Our Proposed Method: Recon

manipulation methods.

Step 1: Calculating the S-Conflict Scores for each shared layers. Step 2: Set layers with top conflict scores task-specific. Step 3: Train the modified network from scratch with any gradient

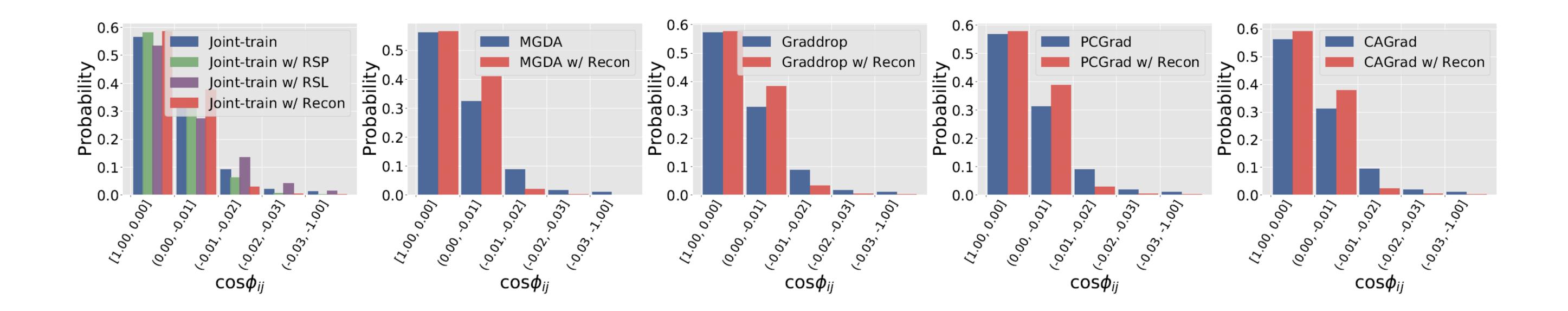
Theoretical Analysis

Theorem I

satisfies

any sufficiently small learning rate $\alpha > 0$,

Recon, $\hat{\theta}$ denotes one without applying Recon.


Assume that \mathcal{L} is differentiable and for any two different tasks \mathcal{T}_i and \mathcal{T}_i , it

 $\cos \phi_{ij}^{(k)} ||g_i^{(k)}|| < ||g_j^{(k)}||, \forall k \in \mathbb{P},$ where \mathbb{P} is the set of indices of the layers turned task-specific, then for $\mathcal{L}(\widehat{\theta}_r) < \mathcal{L}(\widehat{\theta})$ where $\hat{\theta}_r$ denotes the parameter after one-step gradient update applying

7/14

Experiments

with Recon on Multi-Fashion+MNIST benchmark.

ICLR 2023

Figure 3: The distributions of gradient conflicts (in terms of $\cos \phi_{ij}$) of baselines and baselines

Experiments

Table 1: Multi-task learning results on PASCAL-Context dataset with 4-task setting.

	SemSeg (Higher Better) mIoU Pix Acc		PartSeg (Lower Better) mIoU Pix Acc		saliency (Higher Better) mIoU	Surface Normal					
Method						Angle Distance (Lower Better) Mean Median		Within t° (Higher Better)11.2522.5		$\Delta m\%\uparrow$	#P.
Single-task	65.00	90.53	59.59	92.61	65.61	14.55	12.36	46.51	81.29		30.09
Joint-train	64.06	90.45	57.91	92.17	62.71	16.40	14.23	39.38	75.93	-4.82	8.04
w/ Recon	64.73	90.50	59.00	92.44	66.17	14.99	12.68	44.82	80.11	-0.66	10.20
MGDA	46.05	86.62	54.82	91.39	64.76	15.77	13.54	41.98	77.82	-7.67	8.04
w/ Recon	55.82	87.73	56.31	91.67	64.91	15.12	12.88	44.36	79.81	-4.14	10.20
PCGrad	63.91	90.45	58.01	92.19	63.09	16.34	14.19	39.62	76.06	-4.59	8.04
w/ Recon	65.02	90.45	59.22	92.46	66.14	14.95	12.73	44.96	80.22	-0.55	10.20
Graddrop	64.14	90.34	57.62	92.12	62.64	16.46	14.28	39.29	75.71	-5.00	8.04
w/ Recon	64.48	90.45	59.08	92.46	66.23	14.94	12.72	45.03	80.25	-0.63	10.20
CAGrad	63.37	90.17	57.49	92.07	64.16	16.30	14.12	39.80	76.23	-4.37	8.04
w/ Recon	64.60	90.40	59.27	92.47	65.67	14.92	12.71	45.10	80.33	-0.76	10.20
BMTAS	64.89	90.44	58.87	92.36	63.42	15.66	13.44	42.29	78.14	-2.89	15.18
w/ Recon	64.78	90.46	59.96	92.58	65.96	14.74	12.57	45.62	80.84	-0.19	16.83

9/14