

Generalizing and Decoupling Neural Collapse via Hyperspherical Uniformity Gap

Weiyang Liu*, Longhui Yu*, Adrian Weller, Bernhard Schölkopf

What is Neural Collapse (NC)?

- Modern practice for training neural networks involves a terminal phase of training (TPT), which begins at the epoch where training error first vanishes.
- During TPT, the training error stays effectively zero, while training loss is pushed toward zero.

TPT exposes a pervasive symmetry and geometric inductive bias, called

neural collapse

What is Neural Collapse?

- Intra-class variability collapse: Intra-class variability of last-layer features collapses to zero, indicating that all the features of the same class concentrate to their intra-class feature mean.
- Convergence to simplex ETF: After being centered at their global mean, the class-means form a simplex equiangular tight frame (ETF) which is a symmetric structure defined by a set of maximally distant and pair-wise equiangular points on a hypersphere.
- Convergence to self-duality: The linear classifiers, which live in the dual vector space to that of the class-means, converge to their corresponding classmean and also form a simplex ETF.
- Nearest decision rule: The linear classifiers behave like nearest class-mean classifiers.

An visual illustration

The Pitfall of Neural Collapse

• Simplex ETF does NOT exist when the number of classes (C) is larger than the dimension of feature (d), but such a scenario is ubiquitous in practice, e.g., contrastive self-supervised learning, extreme classification, face recognition, etc.

Generalized Neural Collapse (GNC)

- Convergence to hyperspherical uniformity: After being centered at their global mean, the class-means are maximally distant on a hypersphere:

$$\sum_{c \neq c'} K(\hat{\boldsymbol{\mu}}_c, \hat{\boldsymbol{\mu}}_{c'}) \to \min_{\hat{\boldsymbol{\mu}}_1, \dots, \hat{\boldsymbol{\mu}}_C} \sum_{c \neq c'} K(\hat{\boldsymbol{\mu}}_c, \hat{\boldsymbol{\mu}}_{c'}), \quad \|\boldsymbol{\mu}_c - \boldsymbol{\mu}_G\| - \|\boldsymbol{\mu}_{c'} - \boldsymbol{\mu}_G\| \to 0, \ \forall c \neq c'$$
$$\hat{\boldsymbol{\mu}}_i = \|\boldsymbol{\mu}_i - \boldsymbol{\mu}_G\|^{-1} (\boldsymbol{\mu}_i - \boldsymbol{\mu}_G)$$

where K is a kernel function and here we consider Riesz s-kernel

$$K_s(\hat{\boldsymbol{\mu}}_c, \hat{\boldsymbol{\mu}}_{c'}) = \operatorname{sign}(s) \cdot ||\hat{\boldsymbol{\mu}}_c - \hat{\boldsymbol{\mu}}_{c'}||^{-s}$$

- Convergence to self-duality: $\|\boldsymbol{w}_c\|^{-1}\boldsymbol{w}_c \hat{\boldsymbol{\mu}}_c \to 0$ where w denotes the classifier.
- Nearest decision rule: $\arg \max_c \langle \boldsymbol{w}_c, \boldsymbol{x} \rangle + b_c \rightarrow \arg \min_c \|\boldsymbol{x} \boldsymbol{\mu}_c\|$

GNC Provably Covers NC

Simplex ETF is a global optimum for GNC:

Theorem 1 (Regular Simplex Optimum for GNC) Let $f:(0,4] \to \mathbb{R}$ be a convex and decreasing function defined at v=0 by $\lim_{v\to 0^+} f(v)$. If $2 \le C \le d+1$, then we have that the vertices of regular (C-1)-simplices inscribed in \mathbb{S}^{d-1} with centers at the origin (equivalent to simplex ETF) minimize the hyperspherical energy $\sum_{c \ne c'} K(\hat{\mu}_c, \hat{\mu}_{c'})$ on the unit hypersphere \mathbb{S}^{d-1} $(d \ge 3)$ with the kernel as $K(\hat{\mu}_c, \hat{\mu}_{c'}) = f(\|\hat{\mu}_c - \hat{\mu}_{c'}\|^2)$. If f is strictly convex and strictly decreasing, then these are the only energy minimizing C-point configurations. Thus GNC reduces to NC when $d \ge C - 1$.

Regular Simplex

Why GNC is Interesting?

- GNC fully covers the case of NC, while being able to generalize to the case of d<C.
- Similar to NC that connects frame theory to deep learning, GNC connects potential theory to deep learning.
- We use a variational characterization of hyperspherical uniformity, which is easily optimizable and gives us natural learning objective (unlike NC).
- We can prove that the widely used cross-entropy loss also converges to GNC.

Empirical Evidence to Validate GNC

Empirical Evidence to Validate GNC

The same empirical phenomenon also happens in ResNet / ViT on ImageNet!

More Theoretical Results on GNC

Theorem 2 (Cross-polytope Optimum for GNC) If C = 2d, then the vertices of the cross-polytope are the minimizer of the hyperspherical energy in GNC(2).

Theorem 3 (Asymptotic Convergence to Hyperspherical Uniformity) Consider a sequence of point configurations $\{\hat{\mu}_1^C, \cdots, \hat{\mu}_C^C\}_{C=2}^{\infty}$ that asymptotically minimizes the hyperspherical energy on \mathbb{S}^{d-1} as $C \to \infty$, then $\{\hat{\mu}_1^C, \cdots, \hat{\mu}_C^C\}_{C=2}^{\infty}$ is uniformly distributed on the hypersphere \mathbb{S}^{d-1} .

Decoupling GNC: A New Loss Function

- The cross-entropy (CE) loss is arguably the de facto choice for classification loss function.
- While we have proved that CE can provably achieve GNC, it also couples two independent criteria: intra-class variability – GNC(1) and inter-class separability – GNC(2).
- GNC shows that these two criteria can be fully decoupled and learned separately, which yields more flexibility.
- With the characterization of uniformity, we identify a quantity called Hyperspherical Uniformity Gap (HUG) that serves as an alternative loss function other than CE

Hyperspherical Uniformity Gap

General version

$$\max_{\{\hat{\boldsymbol{x}}_i\}_{i=1}^n} \mathcal{L}_{\text{HUG}} := \alpha \cdot \underbrace{\mathcal{H}\mathcal{U}\big(\{\hat{\boldsymbol{\mu}}_c\}_{c=1}^C\big)}_{T_b : \text{ Inter-class Hyperspherical Uniformity}} -\beta \cdot \sum_{c=1}^C \underbrace{\mathcal{H}\mathcal{U}\big(\{\hat{\boldsymbol{x}}_i\}_{i \in A_c}\big)}_{T_w : \text{ Intra-class Hyperspherical Uniformity}}$$

provably minimizing
$$\mathcal{I}(\widehat{Z};Y) = \mathcal{H}(\widehat{Z})$$
 - $\mathcal{H}(\widehat{Z}|Y)$

Proxy-based version (with classifiers)

$$\max_{\{\hat{\boldsymbol{x}}_i\}_{i=1}^n, \{\hat{\boldsymbol{w}}_c\}_{c=1}^C} \mathcal{L}_{\text{P-HUG}} := \alpha \cdot \underbrace{\mathcal{H}\mathcal{U}\big(\{\hat{\boldsymbol{w}}_c\}_{c=1}^C\big)}_{\text{Inter-class Hyperspherical Uniformity}} -\beta \cdot \sum_{c=1}^C \underbrace{\mathcal{H}\mathcal{U}\big(\{\hat{\boldsymbol{x}}_i\}_{i \in A_c}, \hat{\boldsymbol{w}}_c\big)}_{\text{Intra-class Hyperspherical Uniformity}}$$

Variational Characterization of Hyperspherical Uniformity

- For the function *HU*, we consider the following choices:
 - Minimizing the potential energy:

$$\min_{\{\hat{\boldsymbol{v}}_1, \cdots, \hat{\boldsymbol{v}}_n \in \mathbb{S}^{d-1}\}} \left\{ E_s(\hat{\boldsymbol{V}}_n) := \sum_{i=1}^n \sum_{j=1, j \neq i}^n K_s(\hat{\boldsymbol{v}}_i, \hat{\boldsymbol{v}}_j) \right\} \quad K_s(\hat{\boldsymbol{v}}_i, \hat{\boldsymbol{v}}_j) = \left\{ \begin{array}{l} \|\hat{\boldsymbol{v}}_i - \hat{\boldsymbol{v}}_j\|^{-s}, \quad s > 0 \\ -\|\hat{\boldsymbol{v}}_i - \hat{\boldsymbol{v}}_j\|^{-s}, \quad s < 0 \end{array} \right.$$

Maximizing the separation distance:

$$\max_{\hat{oldsymbol{V}}} \left\{ \vartheta(\hat{oldsymbol{V}}_n) := \min_{i \neq j} \|\hat{oldsymbol{v}}_i - \hat{oldsymbol{v}}_j \|
ight\}$$

Maximum gram determinant:

$$\max_{\{\hat{\boldsymbol{v}}_1, \cdots, \hat{\boldsymbol{v}}_n \in \mathbb{S}^{d-1}\}} \log \det \left(\boldsymbol{G} := \left(K(\hat{\boldsymbol{v}}_i, \hat{\boldsymbol{v}}_j)\right)_{i,j=1}^n\right)$$

Some Simple Variants from the HUG Framework

From minimizing the potential energy:

$$\mathcal{L}_{\text{MHE-HUG}}' = \alpha \cdot \sum_{c \neq c'} \|\hat{\boldsymbol{w}}_c - \hat{\boldsymbol{w}}_{c'}\|^{-2} + \beta' \cdot \sum_{c} \sum_{i \in A_c} \|\hat{\boldsymbol{x}}_i - \hat{\boldsymbol{w}}_c\|$$

From maximizing the separation distance:

$$\mathcal{L}_{ ext{MHS-HUG}}' := lpha \cdot \min_{c
eq c'} \lVert \hat{oldsymbol{w}}_c - \hat{oldsymbol{w}}_{c'}
Vert - eta \cdot \sum_{i \in A_c} \max_{i \in A_c} \lVert \hat{oldsymbol{x}}_i - \hat{oldsymbol{w}}_c
Vert$$

From maximizing the gram determinant:

$$\mathcal{L}_{ ext{MGD-HUG}} := lpha \cdot \log \det \left(oldsymbol{G}(\{\hat{oldsymbol{w}}_c\}_{c=1}^C)
ight) + eta' \cdot \sum_{c} \sum_{i \in A} \|\hat{oldsymbol{x}}_i - \hat{oldsymbol{w}}_c \|$$

Loss Landscape Visualization

More smooth and convex loss landscape

Decoupled Loss Function Enables Flexibility

Learning last-layer classifiers is effortless

Method	CIFAR-10	CIFAR-100
CE Loss	5.45	24.90
Fully learnable	5.03	23.50
Static (random)	5.19	24.23
Static (optimized)	5.12	24.02
Partially learnable	5.08	23.89

The performance gain is agnostic to network architectures

Method	ResNet-18	VGG-16	DenseNet-121
CE Loss	5.45 / 24.90	5.28 / 22.99	5.04 / 21.47
HUG	5.03 / 23.50	5.19 / 22.77	4.85 / 21.30

Visualization of learned features

0 --1 **-**2 · -3 -

HUG loss

Experiments

Better OOD generalization and robustness

CIFAR-100

IR	0.2	0.1	0.02	0.01	0.2	0.1	0.02	0.01
CE	66.74	62.31	48.79	43.82	90.29	87.85	79.17	74.11
HUG	67.83	63.33	50.48	45.63	90.41	88.20	79.88	75.14
		C	CIFAR-1	00	(CIFAR-	10	
Memo	ory size	_	CIFAR-1 500			CIFAR- 500	10 2000)
Memo		200		2000	200	500	2000	_

CIFAR-10

MethodClean l_{∞} =2/255 l_{∞} =4/255 l_{∞} =8/255CE Loss5.45 / 24.907.94 / 2.120.61 / 00 / 0HUG5.03 / 23.5015.24 / 5.263.45 / 1.241.76 / 0.44

Long-tail Recognition

Continual Learning

Adversarial Robustness