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What is Neural Collapse (NC)?

e Modern practice for training neural networks involves a terminal phase of
training (TPT), which begins at the epoch where training error first vanishes.

e During TPT, the training error stays effectively zero, while training loss is
pushed toward zero.

e TPT exposes a pervasive symmetry and geometric inductive bias, called
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What is Neural Collapse?

e Intra-class variability collapse: Intra-class variability of last-layer features
collapses to zero, indicating that all the features of the same class concentrate
to their intra-class feature mean.

e Convergence to simplex ETF: After being centered at their global mean, the
class-means form a simplex equiangular tight frame (ETF) which is a symmetric
structure defined by a set of maximally distant and pair-wise equiangular points
on a hypersphere.

e Convergence to self-duality: The linear classifiers, which live in the dual
vector space to that of the class-means, converge to their corresponding class-
mean and also form a simplex ETF.

e Nearest decision rule: The linear classifiers behave like nearest class-mean
classifiers.



An visual illustration
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The Pitfall of Neural Collapse

e Simplex ETF does NOT exist when the number of classes (C) is larger than
the dimension of feature (d), but such a scenario is ubiquitous in practice, e.g.,
contrastive self-supervised learning, extreme classification, face recognition, etc.
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Generalized Neural Collapse (GNC)
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e Intra-class variability collapse: ELZW—m S =Ave.(pe — pc)(pe — pc) "

(o Convergence to hyperspherical uniformity: After being centered at their global h

mean, the class-means are maximally distant on a hypersphere:
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where K is a kernel function and here we consider Riesz s-kernel

L K (frc, fror) =sign(s) - || frc — frer || y

e Convergence to self-duality: |w.|"'w.—f.—0 where w denotes the classifier.

e Nearest decision rule: arg max.(w., x)+b.— argmin, || — p.||



GNC Provably Covers NC

e Simplex ETF is a global optimum for GNC:

( Theorem 1 (Regular Simplex Optimum for GNC) Let f : (0,4] — R be a convex and decreasing\
function defined at v=0 by lim,_,+ f(v). If2<C <d+1, then we have that the vertices of regular
(C —1)-simplices inscribed in S~ with centers at the origin (equivalent to simplex ETF) minimize
the hyperspherical energy 3., K (fic, fbc') on the unit hypersphere S9=1 (d > 3) with the kernel

as K(fic, i) = f(||frc — frer ||?). If f is strictly convex and strictly decreasing, then these are the
konly energy minimizing C-point configurations. Thus GNC reduces to NC when d>C — 1. )
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Why GNC is Interesting?

e GNC fully covers the case of NC, while being able to generalize to the case of
d<C.

e Similar to NC that connects frame theory to deep learning, GNC connects
potential theory to deep learning.

e We use a variational characterization of hyperspherical uniformity, which is
easily optimizable and gives us natural learning objective (unlike NC).

e \We can prove that the widely used cross-entropy loss also converges to GNC.



Empirical Evidence to Validate GNC
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Empirical Evidence to Validate GNC
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(c) Inter-class separability on CIFAR-100 (d) Intra-class variability on CIFAR-100

The same empirical phenomenon also happens in ResNet / ViT on ImageNet!



More Theoretical Results on GNC
Cross-Polytope

Theorem 2 (Cross-polytope Optimum for GNC) If C'=2d, then the vertices of the cross-polytope
are the minimizer of the hyperspherical energy in GNC(2).

Theorem 3 (Asymptotic Convergence to Hyperspherical Uniformity) Consider a sequence of
point configurations {1{ - - -, ¢ } & that asymptotically minimizes the hyperspherical energy on
St as C — oo, then {1, - - - , BEYE_, is uniformly distributed on the hypersphere S~ 1.




Decoupling GNC: A New Loss Function

e The cross-entropy (CE) loss is arguably the de facto choice for classification
loss function.

e While we have proved that CE can provably achieve GNC, it also couples two
independent criteria: intra-class variability — GNC(1) and inter-class
separability — GNC(2).

e GNC shows that these two criteria can be fully decoupled and learned
separately, which yields more flexibility.

e With the characterization of uniformity, we identify a quantity called
Hyperspherical Uniformity Gap (HUG) that serves as an alternative loss
function other than CE



Hyperspherical Uniformity Gap

e General version

(nax Lyyc := o HU({fic}eon) ~B- HU ({#:}iea.)
xT; G=1 \ - J p— N - J
Ty : Inter-class Hyperspherical Uniformity . Tw: Intra-class Hyperspherical Uniformity
provably minimizing Z(Z;Y) = H(Z) - H(Z|Y)
e Proxy-based version (with classifiers)
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Variational Characterization of Hyperspherical Uniformity

e For the function HU, we consider the following choices:
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Minimizing the potential energy:
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Maximizing the separation distance:
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Maximum gram determinant:
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Some Simple Variants from the HUG Framework

e From minimizing the potential energy:

LMHE-HUG = @ - Z e — e || 72 + 8- Z Z [ — el

c;éc’ c 1€EA.
e From maximizing the separation distance:
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e From maximizing the gram determinant:
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Loss Landscape Visualization

e More smooth and convex loss landscape
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Decoupled Loss Function Enables Flexibility

e Learning last-layer classifiers is effortless

Method CIFAR-10 CIFAR-100
CE Loss 545 24.90
Fully learnable 5.03 23.50
Static (random) 5.19 24.23
Static (optimized) 5.12 24.02
Partially learnable 5.08 23.89

e The performance gain is agnostic to network architectures

Method ResNet-18 VGG-16 DenseNet-121

CE Loss 5.45/2490 5.28/22.99 5.04/21.47
HUG 5.03/23.50 5.19/22.77 4.85/21.30




Visualization of learned features

30 4

20 A

10 1

—-10 41

_20 =

_30 -

O oo ~NOULSA WNKE O

-40

-30

-20 -10 0 10

Cross-entropy loss

20

30

W oOo~NOUhA, WNHO




Experiments

e Better OOD generalization and robustness

CIFAR-100 CIFAR-10
IR 02 01 002 00l 02 01 002 001 | -
CE  66.74 6231 48.79 43.82 9029 87.85 79.17 74.11 Long-tail Recognition

HUG 67.83 63.33 50.48 45.63 90.41 88.20 79.88 75.14

CIFAR-100 CIFAR-10
Memory size 200 500 2000 200 500 2000
ER + CE 22.14 31.02 43.54 49.07 61.58 76.89 Continual Learning

ER + HUG  23.52 31.92 43.92 53.74 62.67 77.21

Method Clean loo=2/255 1oo=4/255 [o=8/255
CELoss 545/2490 7.94/212 0.61/0 0/0
HUG 5.03/23.50 15.24/5.26 3.45/1.24 1.76/0.44

Adversarial Robustness



