ICLR 2023

ILA-DA: Improving Transferability of Intermediate Level Attack with Data Augmentation iclr

Chiu Wai Yan cwyan@connect.ust.hk

Tsz-Him Cheung thcheungae@connect.ust.hk

Dit-Yan Yeung dyyeung @cse.ust.hk

> From top to bottom: Clean example, I-FGSM, ILA-DA

Introduction

- DL models are vulnerable to adversarial attacks /examples
- Transfer white-box adversarial attacks to form black-box attacks
 - + I-FGSM, PGD, etc.

Transfer-based Attacks

- + **DIM** (Xie et al., 2019)
 - + Random resizing and zero-padding
- + **TIM** (Dong et al., 2019)
 - + Image translation
- + **SIM** (Lin et al., 2020)
 - + Scaling the pixel values
- + Admix (Wang et al., 2021)
 - + Mixing gradients from different label classes

We propose ILA-DA, which

- + consists of 3 novel augmentation techniques
- + outperforms SOTA attacks on 9 undefended models and 6 defended models
- + can be incorporated into other transfer-based attacks to further strengthen its attack transferability

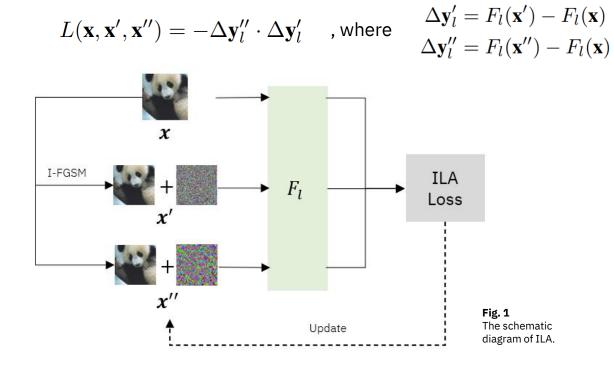
Predefined and fixed image transformations

ILA-DA: Improving Transferability Of Intermediate Level Attack with Data Augmentation

Intermediate-Level Attack (ILA)

ILA (Intermediate Level Attack) (Huang et al., 2019)

- + Given 3 Inputs:
 - + A clean example **x**
 - + An existing adversarial example x'
 - + An example to be fine-tuned $x^{\prime\prime}$
- + F_l : The output of a DNN model F up to the l^{th} layer
- + ILA (Projection) Loss: Maximize the intermediate feature discrepancy

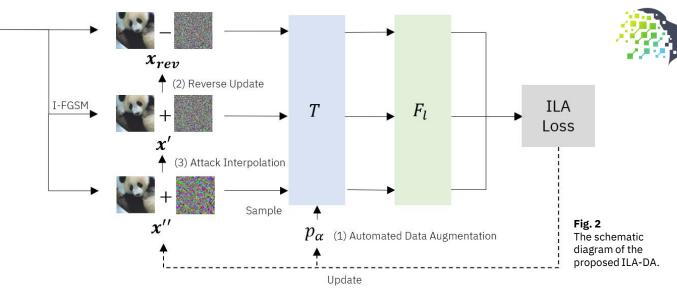


ILA

Results 🕨

x

Our Method



+ Automated Data Augmentation

- + Learn the most effective augmentation from a set of candidates
- + Sample a transformation function T from a learnable distribution p_{α}
- + The probability parameter α is updated using the Gumbel Softmax reparameterization trick

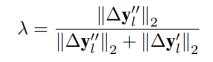
+ Reverse Adversarial Update

- + $x_{rev} = T_{adv}(x) = 2x x'$
- + Increase the confidence of \boldsymbol{x} being recognized as the right class
- + Minus the adversarial example to boost the confidence

+ Attack Interpolation

+ $x'_{t+1} \leftarrow \lambda x''_t + (1-\lambda)x'_t$

- + Strengthen the **reference attack** with the **finetuned attack**
- + Adaptive *λ* based on the norm of the feature maps discrepancy



Results (2) 🕨

Results

Undefended Models

- + ImageNet, CIFAR-10, CIFAR-100
- + 9 pretrained models
- + $\epsilon = 8/255$ and 13/255
- + I-FGSM₁₀ → ILA-DA₅₀

Table 1: Attack success rates of ImageNet adversarial examples on nine undefended models, generated from ResNet50 with $\epsilon = 8/255$ (0.03). The column 'Average' is the average of all models except the source model.

Method	ResNet50*	Inc-v3	WRN	VGG19	PNASNet
I-FGSM	99.9%	14.9%	41.3%	26.4%	17.4%
I-FGSM + ILA	99.9%	34.6%	79.9%	66.7%	43.3%
I-FGSM + ILA++	99.9%	41.5%	87.1%	75.2%	49.2%
I-FGSM + LinBP + SGM	100.0%	35.3%	88.7%	78.7%	45.0%
MI-CT-FGSM	97.9%	65.0%	77.5%	69.7%	67.6%
NI-CT-FGSM	99.4%	59.6%	78.1%	67.1%	64.9%
VMI-CT-FGSM	99.4%	66.6%	84.8%	73.0%	70.2%
VNI-CT-FGSM	99.8%	67.3%	87.4%	76.1%	71.8%
I-FGSM + ILA-DA (Ours)	99.0%	64.1%	92.6%	91.6%	72.4%
Method (cont.)	DenseNet	ResNeXt	MobileNet	SENet	Average
I-FGSM	31.4%	41.8%	31.9%	44.0%	31.1%
I-FGSM + ILA	69.2%	78.5%	67.6%	80.2%	65.0%
I-FGSM + ILA++	79.1%	78.5%	75.3%	87.6%	71.7%
I-FGSM + LinBP + SGM	81.4%	77.1%	75.1%	<u>91.0%</u>	74.7%
MI-CT-FGSM	77.2%	71.6%	74.0%	80.8%	72.9%
NI-CT-FGSM	76.0%	67.0%	73.6%	81.1%	70.9%
VMI-CT-FGSM	82.9%	77.3%	80.5%	86.7%	77.8%
VNI-CT-FGSM	85.1%	80.3%	81.5%	88.9%	79.8%
I-FGSM + ILA-DA (Ours)	89.8%	86.2%	87.9%	91.3%	84.5%

* The source model used to generate the attack.

Defended Models

- + ImageNet
- + 6 defences from NIPS-2018 Competition
- + $\epsilon = 16/255$
- + I-FGSM₁₀ \rightarrow ILA-DA₅₀₀

Table 2: Attack success rates of ImageNet adversarial examples on six defended methods, generated from Inception V3 with $\epsilon = 16/255 \ (0.063)$.

Attack	Inc-v3ens3	Inc-v 3_{ens4}	IncRes-v2ens	HGD	R&P	MMD	Average
I-FGSM	12.1%	10.9%	5.8%	2.7%	4.0%	8.3%	7.3%
+ ILA-DA	86.3%	81.8%	66.4%	82.2%	68.3%	70.9%	75.9%
MI-FGSM	14.1%	13.0%	6.6%	4.6%	5.0%	8.3%	8.6%
+ ILA-DA	83.6%	79.2%	64.6%	79.5%	65.9%	70.2%	73.8%
MI-CT-FGSM	65.5%	62.1%	45.5%	56.6%	44.5%	52.5%	54.5%
+ ILA-DA	88.1%	84.4%	72.3%	84.4%	73.3%	76.2%	79.8%
NI-CT-FGSM	58.8%	54.4%	40.0%	49.2%	38.0%	46.1%	47.8%
+ ILA-DA	87.3%	83.9%	68.5%	81.0%	71.0%	74.7%	77.7%
MI-Admix-TI-DIM	73.4%	70.7%	53.9%	65.4%	53.7%	58.0%	62.5%
+ ILA-DA	88.9%	86.3%	74.6%	85.2 %	77.1%	79.7%	81.9%
VMI-CT-FGSM	77.6%	75.2%	63.6%	72.1%	63.0%	69.7%	70.2%
+ ILA-DA	89.1%	85.7%	74.5%	84.1%	75.6%	78.7%	81.3%
VNI-CT-FGSM	79.1%	77.4%	65.3%	72.7%	63.5%	70.8%	71.5%
+ ILA-DA	88.0%	86.1%	74.5 %	84.2%	75.8%	78.0%	81.1%

Results (2)

Table 3: Comparison of the attack success rates of ImageNet adversarial examples on various models using ILA-DA with different augmentation configurations.

Method	ResNet50*	Inc-v3	WRN	VGG19	PNASNet
I-FGSM + ILA-DA	99.0%	64.1%	92.6%	91.6%	72.4%
w/o Augmentation	99.7%	39.7%	86.6%	79.8%	49.7%
w/ Random Augmentation	$\overline{98.4\%}$	62.6%	90.4%	90.9%	71.3%
w/ All Augmentation	93.4%	59.4%	78.0%	79.9%	64.3%
w/o Reverse adversarial update	97.3%	50.6%	88.0%	92.1%	65.9%
w/o Attack interpolation	99.9%	54.0%	<u>91.8%</u>	83.8%	61.6%
Method (cont.)	DenseNet	ResNeXt	MobileNet	SENet	Average
I-FGSM + ILA-DA	89.8%	86.2%	87.9%	91.3%	84.5%
I-FGSM + ILA-DA w/o Augmentation	89.8% 77.0%	86.2% 76.0%	87.9% 75.6%	$\frac{91.3\%}{85.9\%}$	84.5% 71.3%
w/o Augmentation w/ Random Augmentation	77.0%	76.0%	75.6%	85.9%	71.3%
w/o Augmentation	77.0% 87.3%	76.0% 83.8%	75.6% 88.0%	85.9% 89.3%	71.3% 82.9%

* The source model used to generate the attack.

Ablation Study

- + We study each of the three proposed techniques
- + Data augmentation is the most effective among the three
- + Sampling based on the **learned distribution** is more effective than sampling randomly
- + Applying all three techniques together gives the highest average success rate

ILA-DA: Improving Transferability Of Intermediate Level Attack with Data Augmentation

Summary

ILA-DA applies 3 novel augmentation techniques:

- automated data augmentation
- reverse adversarial update
- attack interpolation

ILA-DA outperforms SOTA on 9 undefended models and 6 defended models.

ILA-DA highlights the effectiveness of data augmentation in transfer-based attacks.

ICLR2023

ILA-DA: Improving Transferability Of Intermediate Level Attack with Data Augmentation