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An Input-Solution Mapping Perspective for
Constrained Optimization

mxin f(x,z)
s.t. gi(x,z2)=0,i=1,..,n

hi(x,z) <ej, j=1,..,m

X0

Z: input parameter vector
x: decision variable vector Gradient descent (green)
Newton's method (red)

- 0 Tremendous applications; many
Input Solution off-the-shelf solvers

v, Z9,Z1—> Solver > ..,x35,x{

0 A solver implicitly characterizes an
input-solution mapping for a
problem
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New Machine Learning Viewpoint by DNN
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O Learn the input-solution mapping for a given problem

0 Pass input through the mapping for solution
— Low run-time complexity for real-time scenarios

— Learning complexity is amortized if the problem is solved
repeatedly

0 Q: can we learn such a mapping?



Challenges and Motivations

Infeasible region

mxin f(x,z)

e

s.t. gi(x,z2)=0,i=1,..,n

. feasible region
hi(x,z) <e, j=1,..,m

z: input parameter vector o : ground-truth

x: decision variable vector "7\ . DNN prediction error

-

O The learned solution from ML models should be as close as the
optimum x™ : optimality requirement

0 The solution should respect the constraints: feasibility requirement

0 Q: can we achieve such a goal?



Preventive Learning (PL)

0 Train DNN with a calibrated feasible set
— Still supporting the full input region

0 With prediction error, DNN solutions are
feasible w.r.t. the original constraints

O Inevitable optimality loss if the optimal
solution is at the boundary

— Use larger DNN to reduce optimality loss

Infeasible region
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‘ \,‘ : DNN prediction error
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" ) :DNN prediction error



PL for Optimization with Linear Constraints

GE) Inequality DNN Size for Adversarial
< Constraint Ensuring Sample-Aware
& Calibration Feasibility Algorithm
4 d
DNN-FG: DNN-EO:
DNN with DNN-FG with
Feasibility Enhanced
Guarantee Optimality

1. Determine the maximum allowed calibration rate
2. Determine the DNN size needed to ensure feasibility
— Without training, output a DNN-FG with provably guaranteed feasibility

3. Adversarial-sample aware training to pursue strong optimality
performance while maintaining feasibility



Step 1: Calibrating Inequality Constraints

0 Rewrite the OPLC with only inequality
constraints by using variable reduction

techniques
0 Calibrating inequality constraints

_Je(l-m)g=0
J = e](1+77]),e]<0
* nj € [0, oo]: Calibration rate

O Solve a min-max problem to find 1,,, 44
that supports all possible input
— Nmax = 0 means no feasibility guarantee

— A lower bound on 1,4, can be found in
polynomial time, denoted by A
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Default
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Step 2: Determining Sufficient DNN Size

0 Given a ReLU DNN with n hidden layers and m neurons
per layer, we optimize parameters (W, b) to minimize the
worst-case constraint violation by an ILP approach [1,2]

— An upper bound of the best worst violation can be found in
polynomial time, denoted as p

0 We double the DNN width, m, until p < A

0 Feasibility guarantee: We obtain a DNN with feasibility
guarantee! (named DNN-FG)

[1] V. Tieng, K. Xiao, and R. Tedrake. Evaluating robustness of neural networks with mixed integer programming. In International Conference on
Learning Representations, 2019.

[2] A. Venzke, G. Qu, S. Low, and S. Chatzivasileiadis. Learning optimal power flow: Worst-case guarantees for neural networks. IEEE
SmartGridComm, 2020.



Step 3: Adversarial Sample Aware Training

Minimize Training Loss Entire Input Region
DNN —
[ Supervised Training ] —) o T
{ A ye .-~ Feasible Input
I Update il 7 Region
Initial Adversarial | . | ----- S
Training data Input
L A Adversarial input with the
—————— Feasible input boundary of DNN

largest constraint violation
------ Feasible input boundary of updated DNN

0 Loss function captures both the prediction errors and constraint violation

It = 1 Z ¢ — )2 4+ iz Violation of each calibrated
— MYy (X =x)" +w M inequality constraints
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Experiments

0 DC-OPF problem

min ZEEN ()\z,ﬂ{?ﬂ + )\i,lpg?; + )\i,O Quad ratic generation cost

s.t. ' BO = Pg — Pp;
bij (0; — 0;) < S, V(1,7) € &,

PE" < pg < PE* Branch flow and power generation
var. pg;,0;, Vi € N. limits

Linearized power balance equation

0 Non-convex optimizationt!

-
min -y Qy + p’ sin(y),st. Ay ==z, ~h <Gy <h,
'HE..R-”' Z

[1] P. L. Donti, D. Rolnick and J. Z. Kolter, "DC3: a learning method for optimization with hard constraints", in Proceedings of 9th
International Conference on Learning Representations (ICLR), virtual conference, May 3 — 7, 2021.



Case Study for Solving DC-OPF Problems

0 We design DeepOPF+ by the preventive learning framework

0 Test cases and maximum calibration rates
— Input load region [100%, 115%] and [115%, 130%]

IEEE Case30 IEEE Casell8 IEEE Case300

Maximum

. . 7.0% 16.7% 21.6%
calibration rate

0 DNN size for ensuring solution feasibility (3 hidden layers)

IEEE Case30 IEEE Casell8 IEEE Case300

DNN size 32/16/8 128/64/32 256/128/64
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Consistent Speedup and Optimality

0 DeepOPF+ with 3% and 7% calibration rates achieves
consistent speedup and minor optimality loss

Case Scheme Average speedups Feasibility rate (%) Optimality loss (%) ‘orsi-case violation (%)
o ’ light-load | heavy-load | lighi-load | heavy-load @ lighi-load | heavy-load |Might-load | heavy-load
DNN-P x B3 Ealil 100 8E.12 0.02 (.03 0 543
DNN-D x B3 B4 100 93.36 0.02 (.03 0 11.19
. DNN-W = 0.90 =0.86 100 100 0 0 0 0
Case30 :

DNN-G x24 x26 100 100 0.13 (.04 0 ]
DeepOPF+-3 xR =92 100 100 0.03 (.04 0 ]
DeepOPF+-7 xR x93 100 100 0.03 .09 0 ]

DNN-P =137 %125 6884 54.92 0.17 .21 19.5 44.8

DNN-D =138 x 124 73.42 55.37 0.20 0.24 16.69 43.1

. DNN-W x2.08 %226 100 100 0 ] 0 ]
Casel 18 g

DNN-G x26 %16 100 100 1.29 (.39 0 ]
DeepOPF+-3 =201 x226 100 100 0.18 .19 0 ]
DeepOPF+-7 =202 x228 100 100 0.37 0.41 0 0

DNN-P =115 =98 01.29 T8.42 0.06 (.08 261.1 443.0

DNN-D =115 =102 01.99 82.92 0.07 0.07 2316 348.1

DNN-W = 104 = 108 100 100 0 0 0 0

Case300 ' '

DNN-G %244 %263 100 100 0.32 .06 0 ]
DeepOPF+-3 x129 =136 100 100 0.03 0 ]
DeepOPF+-7 =130 =138 100 100 0.10 .06 0 0
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[3] Wengian Dong, Zhen Xie, Gokcen Kestor, and Dong Li. Smart-pgsim: using neural network to accelerate AC-OPF power grid simulation. In SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis, 2020.

[4] Meiyi Li, Soheil Kolouri, and Javad Mohammadi. Learning to solve optimization problems with hard linear constraints. arXiv preprint arXiv:2208.10611, 2022.



Consistent Speedup and Optimality

0 DNN scheme with 5% and 10% calibration rates
achieves consistent speedup and minor optimality loss

Scheme Average obfective : g ti S Fcasibility W{)rs‘;t—casc
Scheme | Ref. |l Loss (%) : : rate (%) | violation (%)
DNN-P -5.44 0.40 . : 398 68.3
DNN-D -5.44 0.42 . . 398 41.5
DNN-W 547 547 0 . _ . 100 0
DNN-G 53.69 1076.0 i : 100 0
Pre-DNN-5 -5.45 0.34 . 100 0
Pre-DNN-10 -5.43 0.67 0.60 5.7 100 0
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Conclusion and Future work

0 Conclusion

— Design Preventive Learning as the first framework to guarantee DNN
solution feasibility

— Simulations show the higher speedup and minor optimality loss of our
design

0 Future work
— Solution feasibility for non-convex constrained optimization
— Application to larger problem size and DNN size

— Setting up the DNNs more efficiently and accelerate the corresponding
steps
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