

Machine Intelligence Center

The Chinese University of Hong Kong

Ensuring DNN Solution Feasibility for Optimization Problems with Linear Constraints

Tianyu Zhao^{1,2}, Xiang Pan², Minghua Chen³, Steven Low⁴

¹Lenovo Machine Intelligence Center, Lenovo
 ²Department of Information Engineering, The Chinese University of Hong Kong
 ³School of Data Science, City University of Hong Kong
 ⁴California Institute of Technology

ICLR 2023 Paper ID: 2175

Acknowledgment: Part of the slides are adapted from the ACM SIGMETRICS / IFIP Performance 2022, Tutorial, June

An Input-Solution Mapping Perspective for Constrained Optimization

$\min_{\mathbf{x}} f(\mathbf{x}, \mathbf{z})$

s.t.
$$g_i(x, z) = 0, i = 1, ..., n$$

$$h_i(x, \mathbf{z}) \le e_j, \ j = 1, \dots, m$$

z: input parameter vector *x*: decision variable vector

Gradient descent (green) Newton's method (red)

- Tremendous applications; many off-the-shelf solvers
- A solver implicitly characterizes an input-solution mapping for a problem

New Machine Learning Viewpoint by DNN

- Learn the input-solution mapping for a given problem
- Pass input through the mapping for solution
 - Low run-time complexity for real-time scenarios
 - Learning complexity is amortized if the problem is solved repeatedly
- Q: can we learn such a mapping?

Challenges and Motivations

□ The learned solution from ML models should be as close as the optimum x^* : optimality requirement

- □ The solution should respect the constraints: feasibility requirement
- □ **Q**: can we achieve such a goal?

Preventive Learning (PL)

- Train DNN with a calibrated feasible set
 Still supporting the full input region
- With prediction error, DNN solutions are feasible w.r.t. the original constraints
- Inevitable optimality loss if the optimal solution is at the boundary
 - Use larger DNN to reduce optimality loss

PL for Optimization with Linear Constraints

- 1. Determine the maximum allowed calibration rate
- 2. Determine the DNN size needed to ensure feasibility
 - Without training, output a DNN-FG with provably guaranteed feasibility
- 3. Adversarial-sample aware training to pursue strong optimality performance while maintaining feasibility

Step 1: Calibrating Inequality Constraints

- Rewrite the OPLC with only inequality constraints by using variable reduction techniques
- Calibrating inequality constraints

•
$$h_j \leq \begin{cases} e_j(1-\eta_j), e_j \geq 0 \\ e_j(1+\eta_j), e_j < 0 \end{cases}$$

- $\eta_j \in [0, \infty]$: Calibration rate
- $\hfill\square$ Solve a min-max problem to find η_{max} that supports all possible input
 - $\eta_{max} = 0$ means no feasibility guarantee
 - A lower bound on η_{max} can be found in polynomial time, denoted by Δ

Step 2: Determining Sufficient DNN Size

- □ Given a ReLU DNN with n hidden layers and m neurons per layer, we optimize parameters (W, b) to minimize the worst-case constraint violation by an ILP approach [1,2]
 - An upper bound of the best worst violation can be found in polynomial time, denoted as ρ
- \square We double the DNN width, m, until $ho < \Delta$

Feasibility guarantee: We obtain a DNN with feasibility guarantee! (named DNN-FG)

^[1] V. Tjeng, K. Xiao, and R. Tedrake. Evaluating robustness of neural networks with mixed integer programming. In International Conference on Learning Representations, 2019.

^[2] A. Venzke, G. Qu, S. Low, and S. Chatzivasileiadis. Learning optimal power flow: Worst-case guarantees for neural networks. IEEE SmartGridComm, 2020.

Step 3: Adversarial Sample Aware Training

□ Loss function captures both the prediction errors and constraint violation

$$\mathcal{L}^{t} = w_{1} \frac{1}{N} \sum_{i=1:N} (\hat{x} - x^{*})^{2} + w_{2} \frac{1}{M} \sum_{i=1:N} Violation of each calibrated inequality constraints$$

Experiments

□ DC-OPF problem

min
$$\sum_{i \in \mathcal{N}} (\lambda_{i,2} p_{gi}^2 + \lambda_{i,1} p_{gi} + \lambda_{i,0})$$
Quadratic generation costs.t. $\mathbf{B}\boldsymbol{\theta} = \boldsymbol{p}_G - \boldsymbol{p}_D$,
 $b_{ij} (\theta_i - \theta_j) \leq S_{ij}^{\max}, \forall (i, j) \in \mathcal{E},$
 $P_G^{\min} \leq \boldsymbol{p}_G \leq P_G^{\max}$ Linearized power balance equationvar. $p_{Gi}, \theta_i, \forall i \in \mathcal{N}.$ Branch flow and power generation
limits

□ Non-convex optimization^[1]

$$\min_{y \in \mathcal{R}^n} \quad \frac{1}{2} y^T Q y + p^T \sin(y), \text{ s.t. } \quad Ay = x, -h \le G y \le h,$$

[1] P. L. Donti, D. Rolnick and J. Z. Kolter, "DC3: a learning method for optimization with hard constraints", in Proceedings of 9th International Conference on Learning Representations (ICLR), virtual conference, May 3 – 7, 2021.

Case Study for Solving DC-OPF Problems

- □ We design DeepOPF+ by the preventive learning framework
- Test cases and maximum calibration rates
 - Input load region [100%, 115%] and [115%, 130%]

	IEEE Case30	IEEE Case118	IEEE Case300
Maximum calibration rate	7.0%	16.7%	21.6%

DNN size for ensuring solution feasibility (3 hidden layers)

	IEEE Case30	IEEE Case118	IEEE Case300
DNN size	32/16/8	128/64/32	256/128/64

Consistent Speedup and Optimality

DeepOPF+ with 3% and 7% calibration rates achieves consistent speedup and minor optimality loss

Case Scheme		Average speedups		Feasibili	ty rate (%)	Optimali	ty loss (%)	Worst-case violation (%)		
Cuse	benefile	light-load	heavy-load	light-load	heavy-load	light-load	heavy-load	ight-load	heavy-load	
	DNN-P	×85	×86	100	88.12	0.02	0.03	0	5.43	
Case30	DNN-D	×85	×84	100	93.36	0.02	0.03	0	11.19	
	DNN-W	×0.90	×0.86	100	100	0	0	0	0	
	DNN-G	×24	×26	100	100	0.13	0.04	0	0	
	DeepOPF+-3	×86	×92	100	100	0.03	0.04	0	0	
	DeepOPF+-7	×86	×93	100	100	0.03	0.09	0	0	
Case118	DNN-P	×137	×125	68.84	54.92	0.17	0.21	19.5	44.8	
	DNN-D	×138	×124	73.42	55.37	0.20	0.24	16.69	43.1	
	DNN-W	×2.08	×2.26	100	100	0	0	0	0	
	DNN-G	×26	×16	100	100	1.29	0.39	0	0	
	DeepOPF+-3	×201	×226	100	100	0.18	0.19	0	0	
	DeepOPF+-7	×202	×228	100	100	0.37	0.41	0	0	
Case300	DNN-P	×115	×98	91.29	78.42	0.06	0.08	261.1	443.0	
	DNN-D	×115	×102	91.99	82.92	0.07	0.07	231.6	348.1	
	DNN-W	×1.04	×1.08	100	100	0	0	0	0	
	DNN-G	×2.44	×2.65	100	100	0.32	0.06	0	0	
	DeepOPF+-3	×129	×136	100	100	0.03	0.03	0	0	
	DeepOPF+-7	×130	×138	100	100	0.10	0.06	0	0	
		· · · · · ·							-	

[1] Xiang Pan, Tianyu Zhao, Minghua Chen, and Shengyu Zhang. Deepopf: A deep neural network approach for security-constrained DC optimal power flow. IEEE Transactions on Power Systems, 36(3):1725–1735, 2020.

[2] Priya L Donti, David Rolnick, and J Zico Kolter. DC3: A learning method for optimization with hard constraints. arXiv preprint arXiv:2104.12225, 2021.

[3] Wenqian Dong, Zhen Xie, Gokcen Kestor, and Dong Li. Smart-pgsim: using neural network to accelerate AC-OPF power grid simulation. In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, 2020.

[4] Meiyi Li, Soheil Kolouri, and Javad Mohammadi. Learning to solve optimization problems with hard linear constraints. arXiv preprint arXiv:2208.10611, 2022.

Consistent Speedup and Optimality

 DNN scheme with 5% and 10% calibration rates achieves consistent speedup and minor optimality loss

				_				_		_
Scheme Average ob		ective		verage runnii		g time (ms)		Feasibility	Worst-case	
Scheme	Scheme	Ref.	Loss (%)	Γ	cheme	Ref	Speedup		rate (%)	violation (%)
DNN-P	-5.44		0.40	Γ	1.36		85.7		39.8	68.3
DNN-D	-5.44		0.42		0.79		117.0		39.8	41.5
DNN-W	-5.47	5 17	0	Í	86.6	86.4	1.02		100	0
DNN-G	53.69	-5.47	1076.0		1.00	00.0	87.0		100	0
Pre-DNN-5	-5.45		0.34		0.60		144.9		100	0
Pre-DNN-10	-5.43		0.67		0.60		145.3		100	0

Conclusion and Future work

Conclusion

- Design Preventive Learning as the first framework to guarantee DNN solution feasibility
- Simulations show the higher speedup and minor optimality loss of our design

□ Future work

- Solution feasibility for non-convex constrained optimization
- Application to larger problem size and DNN size
- Setting up the DNNs more efficiently and accelerate the corresponding steps

Thanks.