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An Input-Solution Mapping Perspective for 
Constrained Optimization
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□ Tremendous applications; many 
off-the-shelf solvers

□ A solver implicitly characterizes an 
input-solution mapping for a 
problem
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New Machine Learning Viewpoint by DNN
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□ Learn the input-solution mapping for a given problem

□ Pass input through the mapping for solution
– Low run-time complexity for real-time scenarios
– Learning complexity is amortized if the problem is solved 

repeatedly

□ Q: can we learn such a mapping?



Challenges and Motivations
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□ The learned solution from ML models should be as close as the 
optimum 𝑥∗ : optimality requirement

□ The solution should respect the constraints: feasibility requirement

□ Q: can we achieve such a goal?



Preventive Learning (PL)

□ Train DNN with a calibrated feasible set
– Still supporting the full input region

□ With prediction error, DNN solutions are 
feasible w.r.t. the original constraints

□ Inevitable optimality loss if the optimal 
solution is at the boundary
– Use larger DNN to reduce optimality loss
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PL for Optimization with Linear Constraints

1. Determine the maximum allowed calibration rate  
2. Determine the DNN size needed to ensure feasibility

– Without training, output a DNN-FG with provably guaranteed feasibility

3. Adversarial-sample aware training to pursue strong optimality 
performance while maintaining feasibility
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Step 1: Calibrating Inequality Constraints

□ Rewrite the OPLC with only inequality 
constraints by using variable reduction 
techniques

□ Calibrating inequality constraints

• ℎ𝑗 ≤ ቐ
𝑒𝑗 1 − 𝜂𝑗 , 𝑒𝑗 ≥ 0

𝑒𝑗 1 + 𝜂𝑗 , 𝑒𝑗 < 0

• 𝜂𝑗 ∈ [0,∞]: Calibration rate

□ Solve a min-max problem to find 𝜂𝑚𝑎𝑥
that supports all possible input
– 𝜂𝑚𝑎𝑥 = 0 means no feasibility guarantee
– A lower bound on 𝜂𝑚𝑎𝑥 can be found in 

polynomial time, denoted by Δ
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Step 2: Determining Sufficient DNN Size

□ Given a ReLU DNN with 𝑛 hidden layers and 𝑚 neurons 
per layer, we optimize parameters (𝑊, 𝑏) to minimize the 
worst-case constraint violation by an ILP approach [1,2]
– An upper bound of the best worst violation can be found in 

polynomial time, denoted as 𝜌

□ We double the DNN width, 𝑚, until 𝜌 < Δ

□ Feasibility guarantee: We obtain a DNN with feasibility 
guarantee! (named DNN-FG)
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Step 3: Adversarial Sample Aware Training

9

□ Loss function captures both the prediction errors and constraint violation 

ℒ𝑡 = 𝑤1
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Experiments
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□ DC-OPF problem

□ Non-convex optimization[1] 

[1] P. L. Donti, D. Rolnick and J. Z. Kolter, "DC3: a learning method for optimization with hard constraints", in Proceedings of 9th 

International Conference on Learning Representations (ICLR), virtual conference, May 3 – 7, 2021.

Quadratic generation cost

Linearized power balance equation

Branch flow and power generation 
limits



Case Study for Solving DC-OPF Problems

□ We design DeepOPF+ by the preventive learning framework
□ Test cases and maximum calibration rates

– Input load region [100%, 115%] and [115%, 130%]

□ DNN size for ensuring solution feasibility (3 hidden layers)
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IEEE Case30 IEEE Case118 IEEE Case300

Maximum
calibration rate

7.0% 16.7% 21.6%

IEEE Case30 IEEE Case118 IEEE Case300

DNN size 32/16/8 128/64/32 256/128/64



Consistent Speedup and Optimality

□ DeepOPF+ with 3% and 7% calibration rates achieves 
consistent speedup and minor optimality loss
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Consistent Speedup and Optimality

□ DNN scheme with 5% and 10% calibration rates 
achieves consistent speedup and minor optimality loss
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Conclusion and Future work

□ Future work
– Solution feasibility for non-convex constrained optimization

– Application to larger problem size and DNN size

– Setting up the DNNs more efficiently and accelerate the corresponding 
steps 
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□ Conclusion
– Design Preventive Learning as the first framework to guarantee DNN 

solution feasibility

– Simulations show the higher speedup and minor optimality loss of our 
design



Thanks.


