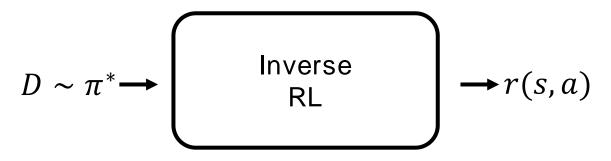
Learning Soft Constraints from Constrained Expert Demonstrations

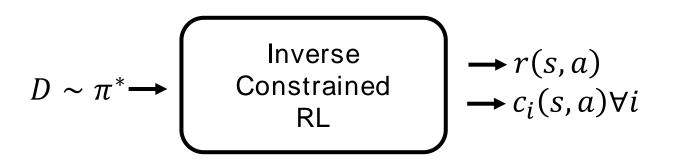
Ashish Gaurav, Kasra Rezaee, Guiliang Liu, Pascal Poupart

ICLR 2023

香港中丈大學(深圳) The Chinese University of Hong Kong, Shenzhen



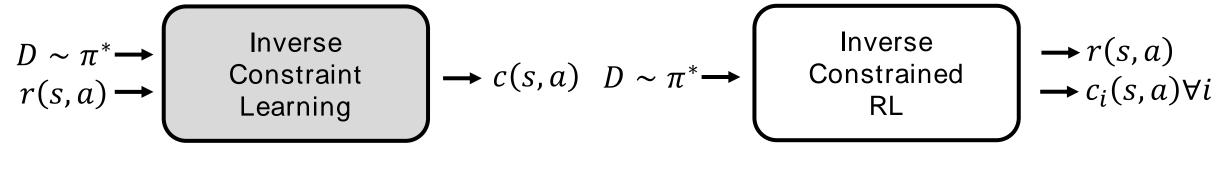
IRL(*D*) returns r(s, a) s.t. **RL**(r) $\approx D$



IRL(*D*) returns $r(s, a), c_i(s, a) \forall i$ s.t. **CRL**($r, \{c_i, \beta_i\}_{i=1}^n$) $\approx D$

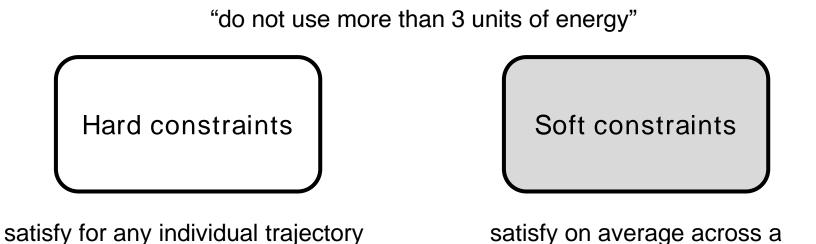
$$D \sim \pi^* \longrightarrow$$
 Inverse $RL \longrightarrow r(s, a)$

IRL(*D*) returns r(s, a) s.t. **RL**(r) $\approx D$



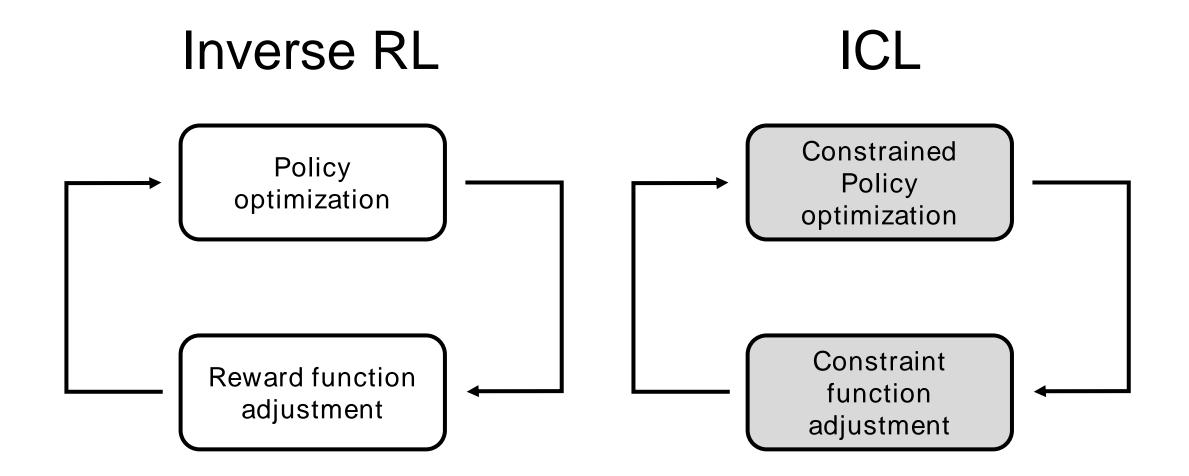
ICL(*D*,*r*) returns c(s,a)s.t. **CRL**(r, {c, β }) $\approx D$ **IRL**(*D*) returns $r(s, a), c_i(s, a) \forall i$ s.t. **CRL**($r, \{c_i, \beta_i\}_{i=1}^n$) $\approx D$

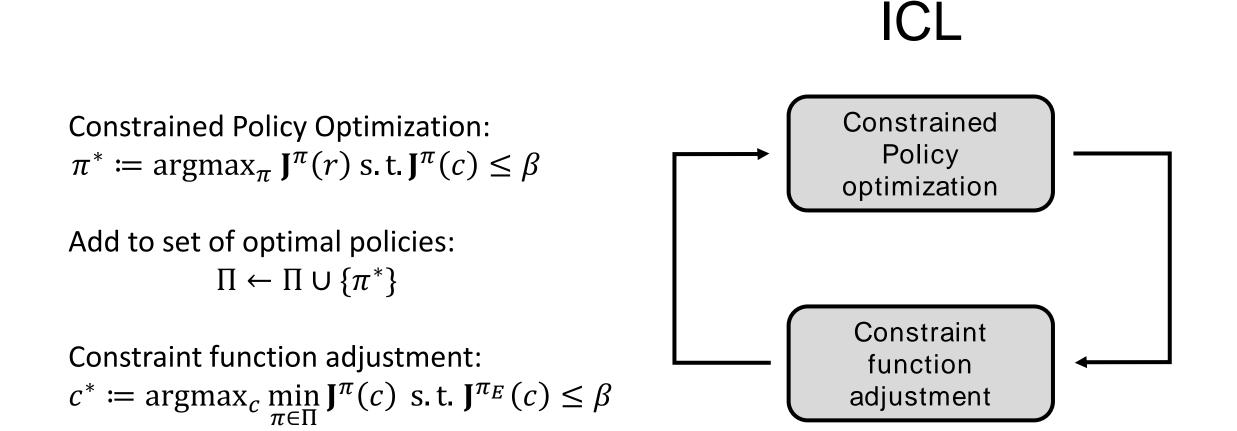
- Novel formulation that can learn an arbitrary constraint function from optimal constrained demonstrations (ICL)
- First method that can learn a soft/expected constraint
- Experiments on synthetic environments, robotics environments and with real world driving scenarios



set of trajectories

Learning reward given constraints	Instantaneous constraints	Constraint sets	Non neural network based continuous	
(different setting)	Ensure constraint $c(s,a) \le \beta$ is satisfied at every step within any trajectory	Find sets of state- action pairs that are not allowed (constrained)	Constraints Parametric and non parametric continuous constraints	
Maximum entropy constraint learning	Bayesian constraint learning	Hard constraints Ensure constraint	Soft/expected constraints Ensure constraint	
methods using the maximum entropy formulation	methods using Bayesian updating to learn the reward/constraint	$\Sigma_t \gamma^t c(s_t, a_t) \le \beta$ is satisfied for any trajectory	$\begin{split} \mathbb{E}[\Sigma_t \gamma^t c(s_t, a_t)] &\leq \beta \text{ is} \\ \text{ satisfied in} \\ \text{expectation across a} \\ \text{ set of trajectories} \end{split}$	





Define $\mathbf{J}^{\pi}(r) \coloneqq \mathbf{E}_{\pi}[\Sigma_{t}\gamma^{t}r(s_{t},a_{t})]$

(Theorem 1) Alternating between these optimization procedures converges in the sense that eventually π^* becomes π_E

Constrained Policy Optimization: $\pi^* \coloneqq \operatorname{argmax}_{\pi} \mathbf{J}^{\pi}(r) \text{ s. t. } \mathbf{J}^{\pi}(c) \leq \beta$ Add to set of optimal policies: $\Pi \leftarrow \Pi \cup \{\pi^*\}$ Constraint function adjustment: $c^* \coloneqq \operatorname{argmax}_{c} \min_{\pi \in \Pi} \mathbf{J}^{\pi}(c) \text{ s. t. } \mathbf{J}^{\pi_E}(c) \leq \beta$ Constraint function adjustment:

Difficult to optimize!

Define $\mathbf{J}^{\pi}(r) \coloneqq \mathbf{E}_{\pi}[\Sigma_{t}\gamma^{t}r(s_{t},a_{t})]$

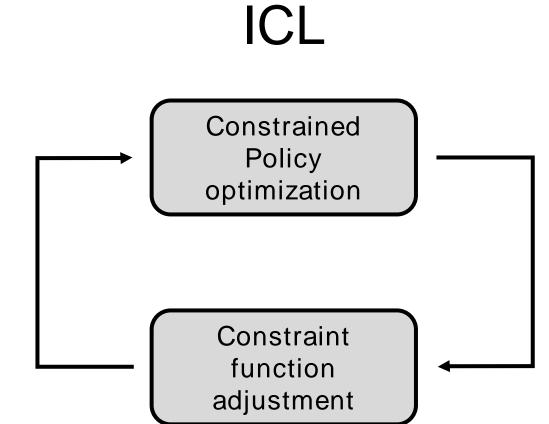
(Theorem 1) Alternating between these optimization procedures converges in the sense that eventually π^* becomes π_E

Constrained Policy Optimization: $\pi^* \coloneqq \operatorname{argmax}_{\pi} \mathbf{J}^{\pi}(r) \text{ s.t. } \mathbf{J}^{\pi}(c) \leq \beta$

Add to set of optimal policies: $\Pi \leftarrow \Pi \cup \{\pi^*\}$

Constraint function adjustment: $c^* \coloneqq \operatorname{argmax}_c \mathbf{J}^{\pi_{\min}}(c) \text{ s. t. } \mathbf{J}^{\pi_E}(c) \leq \beta$

Simpler to optimize



Define $\mathbf{J}^{\pi}(r) \coloneqq \mathbf{E}_{\pi}[\Sigma_{t}\gamma^{t}r(s_{t},a_{t})]$

Algorithm 1 INVERSE-CONSTRAINT-LEARNING

hyper-parameters: number of ICL iterations n, tolerance ϵ

input: expert dataset $\mathcal{D} = \{\tau\}_{\tau \in \mathcal{D}} := \{\{(s_t, a_t)\}_{1 \le t \le |\tau|}\}_{\tau \in \mathcal{D}}$

- 1: **initialize** normalizing flow f
- 2: optimize likelihood of f on expert state action data: $\max_f \text{SUM}_{(s,a)\in\tau,\tau\in\mathcal{D}}(\log p_f(s,a))$
- 3: **initialize** constraint function c (parameterized by ϕ)

4: for $1 \le i \le n$ do

- 5: **initialize** policy π_i (parameterized by θ_i)
- 6: **perform** $\pi_i := \text{CONSTRAINED-RL}(\pi_i, c)$
- 7: **perform** $c := \text{CONSTRAINT-ADJUSTMENT}(\pi_{1:i}, c, \mathcal{D}, f)$
- 8: **break** if NORMALIZED-ACCRUAL-DISSIMILARITY $(\mathcal{D}, \mathcal{D}_{\pi_i}) \leq \epsilon$

▷ See Section 5 for normalized accrual dissimilarity metric

9: end for

output: learned constraint function c (neural network with sigmoid output),

learned most recent policy π_i

Algorithm 2 CONSTRAINED-RL	Algorithm 3 CONSTRAINT-ADJUSTMENT		
hyper-parameters: learning rates η_1, η_2 , constraint threshold β , constrained RL epochs m input: policy π_i parameterized by θ_i , constraint function c 1: for $1 \le j \le m$ do 2: correct π_i to be feasible: (iterate) $\theta_i \leftarrow \theta_i - \eta_1 \nabla_{\theta_i} \text{RELU}(J_{\mu}^{\pi_i}(c) - \beta)$ 3: optimize expected discounted reward: $\theta_i \leftarrow \theta_i - \eta_2 \nabla_{\theta_i} \text{PPO-LOSS}(\pi_i)$ $\triangleright Proximal Policy Optimization (Schulman et al.) (2017)$ 4: end for output: learned policy π_i	hyper-parameters: learning rate η ₃ , penalty wt. λ, constraint threshold β, constraint adjustment epochs e input: policies π _{1:i} , constraint function c, trained normalizing flow f, expert dataset $D = \{T\}_{\tau \in D} := \{\{(s_t, a_t)\}_{1 \le t \le \tau }\}_{\tau \in D}$ given: $c^{\gamma}(\tau) := \text{SUM}_{1 \le t \le \tau }(\gamma^{t-1}c(s_t, a_t))$, SAMPLE _τ (II, p) which generates D trajectories $\tau = \{(s_t, a_t)\}_{1 \le t \le \tau }$, where for each τ , we choose $\pi \in \Pi$ with prob. $p(\pi)$, then, $s_1 \sim \mu(\cdot), a_t \sim \pi(\cdot s_t), s_{t+1} \sim p(\cdot s_t, a_t)$ 1: $\mu_E := \text{MEAN}_{(s,a) \in \tau, \tau \in D}(-\log p_f(s, a))$ 2: $\sigma_E := \text{STD-DEV}_{(s,a) \in \tau, \tau \in D}(-\log p_f(s, a))$ 3: $w(\tau) := \text{MEAN}_{(s,a) \in \tau}(1(-\log p_f(s, a) > \mu_E + \sigma_E))$ ▷ trajectory dissimilarity w.r.t. expert 4: construct policy dataset $D_{\pi_i} = \text{SAMPLE}_{\tau}(\Pi = \pi_{1:i}, p(\pi_i) \propto \tilde{w}_i)$ ▷ policy reweighting 5: $\tilde{w}_i := \text{MEAN}_{\tau \in D_{\pi_i}} w(\tau)$ ▷ unnormalized policy weights 6: construct agent dataset $D_A = \text{SAMPLE}_{\tau}(\Pi = \pi_{1:i}, p(\pi_i) \propto \tilde{w}_i)$ ▷ policy reweighting 7: for $1 \le j \le e$ do ▷ ▷ constraint function adjustment 8: compute $J^{\pi_{mix}}_{\mu}(c) := \text{SUM}_{\tau \in D_A} \frac{w(\tau)c^{\gamma}(\tau)}{\text{SUM}_{\tau \in D_A} w(\tau)}$ ▷ trajectory reweighting 9: compute $J^{\pi_E}_{\mu}(c) := \text{MEAN}_{\tau \in D}(c^{\gamma}(\tau))$ 10: compute soft loss $L_{\text{soft}}(c) := -J^{\pi_{mix}}_{\mu}(c) + \lambda \text{RELU}(J^{\pi_E}_{\mu}(c) - \beta)$ 11: optimize constraint function $c: \phi \leftarrow \phi - \eta_3 \nabla_{\phi} L_{\text{soft}}(c)$		

Algorithm 1 INVERSE-CONSTRAINT-LEARNING

hyper-parameters: number of ICL iterations n, tolerance ϵ

input: expert dataset $\mathcal{D} = \{\tau\}_{\tau \in \mathcal{D}} := \{\{(s_t, a_t)\}_{1 \le t \le |\tau|}\}_{\tau \in \mathcal{D}}$

- Loop alternates between Constrained RL and Constraint adjustment

```
1: initialize normalizing flow f
2: optimize likelihood of f on expert state action data: \max_f \text{SUM}_{(s,a) \in \tau, \tau \in \mathcal{D}}(\log p_f(s,a))
3: initialize constraint function c (parameterized by \phi)
4: for 1 < i < n do
       initialize policy \pi_i (parameterized by \theta_i)
5:
       perform \pi_i := \text{CONSTRAINED-RL}(\pi_i, c)
6:
       perform c := \text{CONSTRAINT-ADJUSTMENT}(\pi_{1:i}, c, \mathcal{D}, f)
7:
       break if NORMALIZED-ACCRUAL-DISSIMILARITY(\mathcal{D}, \mathcal{D}_{\pi_i}) \leq \epsilon
8:
                                             ▷ See Section 5 for normalized accrual dissimilarity metric
9: end for
   output: learned constraint function c (neural network with sigmoid output),
```

learned most recent policy π_i

Algorithm 2 CONSTRAINED-RL

hyper-parameters: learning rates η_1, η_2 , constraint threshold β , constrained RL epochs m **input:** policy π_i parameterized by θ_i , constraint function c

1: for $1 \leq j \leq m$ do

- correct π_i to be feasible: (iterate) $\boldsymbol{\theta}_i \leftarrow \boldsymbol{\theta}_i \eta_1 \nabla_{\boldsymbol{\theta}_i} \text{RELU}(J_{\mu}^{\pi_i}(c) \beta)$ 2:
- **optimize** expected discounted reward: $\theta_i \leftarrow \theta_i \eta_2 \nabla_{\theta_i} \text{PPO-Loss}(\pi_i)$ 3:

▷ Proximal Policy Optimization (Schulman et al. 2017)

4: end for

output: learned policy π_i

Algorithm 3 CONSTRAINT-ADJUSTMENT

```
hyper-parameters: learning rate \eta_3, penalty wt. \lambda, constraint threshold \beta,
                  constraint adjustment epochs e
      input: policies \pi_{1:i}, constraint function c, trained normalizing flow f,
                 expert dataset \mathcal{D} = \{\tau\}_{\tau \in \mathcal{D}} := \{\{(s_t, a_t)\}_{1 \le t \le |\tau|}\}_{\tau \in \mathcal{D}}
      given: c^{\gamma}(\tau) := \text{SUM}_{1 \le t \le |\tau|}(\gamma^{t-1}c(s_t, a_t)),
                  SAMPLE<sub>\tau</sub>(\Pi, p) which generates |\mathcal{D}| trajectories \tau = \{(s_t, a_t)\}_{1 \le t \le |\tau|}, where for each
                 \tau, we choose \pi \in \Pi with prob. p(\pi), then, s_1 \sim \mu(\cdot), a_t \sim \pi(\cdot | s_t), s_{t+1} \sim p(\cdot | s_t, a_t)
 1: \mu_E := \text{MEAN}_{(s,a) \in \tau, \tau \in \mathcal{D}}(-\log p_f(s,a))
 2: \sigma_E := \text{STD-DEV}_{(s,a) \in \tau, \tau \in \mathcal{D}}(-\log p_f(s,a))
 3: w(\tau) := \text{MEAN}_{(s,a) \in \tau} (\mathbf{1}(-\log p_f(s,a) > \mu_E + \sigma_E)) \triangleright trajectory dissimilarity w.r.t. expert
 4: construct policy dataset \mathcal{D}_{\pi_i} = \text{SAMPLE}_{\tau}(\Pi = \{\pi_i\}, p = \{1\})
 5: \tilde{w}_i := \text{MEAN}_{\tau \in \mathcal{D}_{\pi_i}} w(\tau)
                                                                                                         > unnormalized policy weights
 6: construct agent dataset \mathcal{D}_A = \text{SAMPLE}_{\tau}(\Pi = \pi_{1:i}, p(\pi_i) \propto \tilde{w}_i)
                                                                                                                         ▷ policy reweighting
 7: for 1 \leq j \leq e do
                                                                                                      ▷ constraint function adjustment
           compute J^{\pi_{mix}}_{\mu}(c) := \text{SUM}_{\tau \in \mathcal{D}_A} \frac{w(\tau)c^{\gamma}(\tau)}{\text{SUM}_{\tau \in \mathcal{D}_A} w(\tau)}
                                                                                                                   ▷ trajectory reweighting
 8:
           compute J^{\pi_E}_{\mu}(c) := \text{MEAN}_{\tau \in \mathcal{D}}(c^{\gamma}(\tau))
 9:
           compute soft loss L_{soft}(c) := -J_{\mu}^{\pi_{mix}}(c) + \lambda \text{ReLU}(J_{\mu}^{\pi_E}(c) - \beta)
10:
            optimize constraint function c: \phi \leftarrow \phi - \eta_3 \nabla_{\phi} L_{\text{soft}}(c)
11:
12: end for
      output: constraint function c
```

Algorithm 1 INVERSE-CONSTRAINT-LEARNING

hyper-parameters: number of ICL iterations n, tolerance ϵ

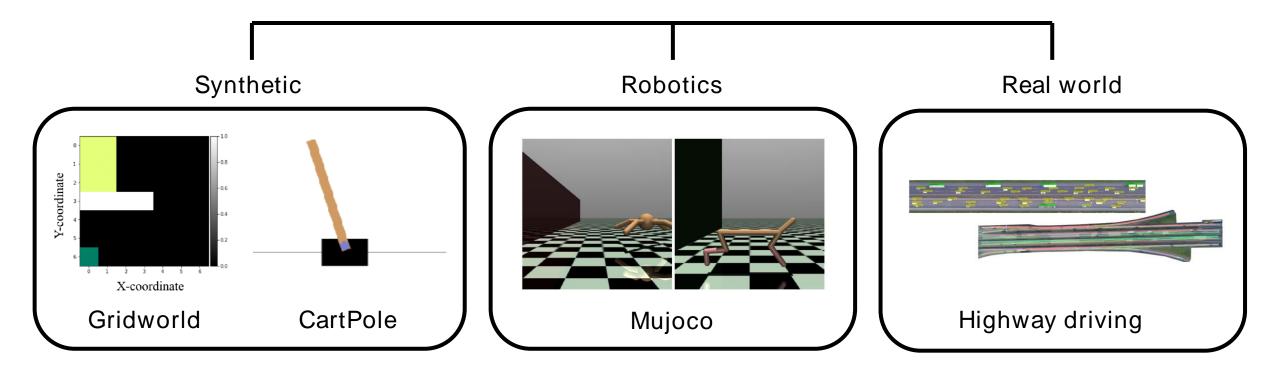
input: expert dataset $\mathcal{D} = \{\tau\}_{\tau \in \mathcal{D}} := \{\{(s_t, a_t)\}_{1 \le t \le |\tau|}\}_{\tau \in \mathcal{D}}$

- Loop alternates between Constrained RL and Constraint adjustment
- 1: **initialize** normalizing flow f2: optimize likelihood of f on expert state action data: $\max_f \text{SUM}_{(s,a) \in \tau, \tau \in \mathcal{D}}(\log p_f(s,a))$ 3: **initialize** constraint function c (parameterized by ϕ) 4: for 1 < i < n do **initialize** policy π_i (parameterized by θ_i) 5: **perform** $\pi_i := \text{CONSTRAINED-RL}(\pi_i, c)$ 6: **perform** $c := \text{CONSTRAINT-ADJUSTMENT}(\pi_{1:i}, c, \mathcal{D}, f)$ 7: **break** if NORMALIZED-ACCRUAL-DISSIMILARITY $(\mathcal{D}, \mathcal{D}_{\pi_i}) \leq \epsilon$ 8: ▷ See Section 5 for normalized accrual dissimilarity metric 9: end for output: learned constraint function c (neural network with sigmoid output), learned most recent policy π_i

Constrained RL algorithm can be replaced with any equivalent algorithm!

Algorithm 2 CONSTRAINED-RL	Algorithm 3 CONSTRAINT-ADJUSTMENT		
 hyper-parameters: learning rates η₁, η₂, constraint threshold β, constrained RL epochs m input: policy π_i parameterized by θ_i, constraint function c 1: for 1 ≤ j ≤ m do 2: correct π_i to be feasible: (iterate) θ_i ← θ_i - η₁∇_{θ_i}RELU(J^{π_i}_μ(c) - β) 3: optimize expected discounted reward: θ_i ← θ_i - η₂∇_{θ_i}PPO-LOSS(π_i) ▷ Proximal Policy Optimization (Schulman et al. 2017) 4: end for output: learned policy π_i 	 hyper-parameters: learning rate η₃, penalty wt. λ, constraint threshold β, constraint adjustment epochs e input: policies π_{1:i}, constraint function c, trained normalizing flow f, expert dataset D = {τ}_{τ∈D} := {{(s_t, a_t)}_{1≤t≤ τ}}_{τ∈D} given: c^γ(τ) := SUM_{1≤t≤ τ}(γ^{t-1}c(s_t, a_t)), 		
Constrained optimization using the penalty method:			
$\min_{y} f(y) \text{ s. t. } g(y) \le 0$ becomes $\min_{y} L(y) \coloneqq f(y) + \lambda \operatorname{ReLU}(g(y))$	8: compute $J_{\mu}^{\pi_{mix}}(c) := \text{SUM}_{\tau \in \mathcal{D}_A} \frac{w(\tau)c^{\gamma}(\tau)}{\text{SUM}_{\tau \in \mathcal{D}_A}w(\tau)}$ \triangleright trajectory reweighting 9: compute $J_{\mu}^{\pi_E}(c) := \text{MEAN}_{\tau \in \mathcal{D}}(c^{\gamma}(\tau))$ 10: compute soft loss $L_{\text{soft}}(c) := -J_{\mu}^{\pi_{mix}}(c) + \lambda \text{RELU}(J_{\mu}^{\pi_E}(c) - \beta)$ 11: optimize constraint function $c: \phi \leftarrow \phi - \eta_3 \nabla_{\phi} L_{\text{soft}}(c)$ 12: end for output: constraint function c		

Experiments



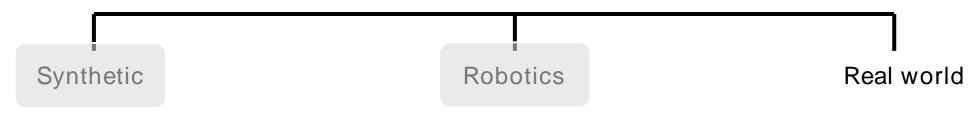
Baselines

- GAIL Constraint: Ho & Ermon (2016)
- ICRL: Malik et al. (2021)

Metrics

- Constraint MSE (recovered vs true)
- Similarity between policies (learned vs expert)

Experiments



Constraint MSE (recovered vs true)

Algorithm \downarrow , Environment \rightarrow	Gridworld (A)	Gridworld (B)	CartPole (MR)	CartPole (Mid)	Ant-Constrained	HalfCheetah-Constrained
GAIL-Constraint	0.31 ± 0.01	0.25 ± 0.01	0.12 ± 0.03	0.25 ± 0.02	0.17 ± 0.04	0.20 ± 0.03
ICRL	0.11 ± 0.02	0.21 ± 0.04	0.21 ± 0.16	0.27 ± 0.03	0.41 ± 0.00	0.35 ± 0.17
ICL (ours)	0.08 ± 0.01	0.04 ± 0.01	0.02 ± 0.00	0.08 ± 0.05	0.07 ± 0.00	0.05 ± 0.00

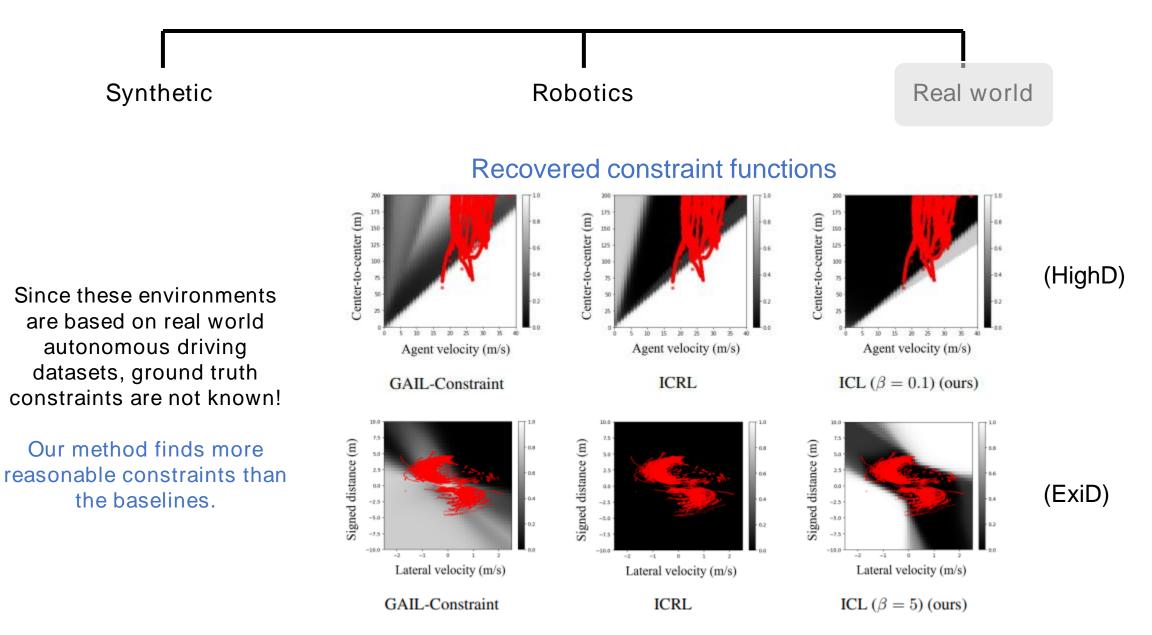
Recovered constraint is closest to the true constraint for our method

Dissimilarity between policies (learned vs expert)

Algorithm \downarrow , Environment \rightarrow	Gridworld (A)	Gridworld (B)	CartPole (MR)	CartPole (Mid)	Ant-Constrained	HalfCheetah-Constrained
GAIL-Constraint	1.76 ± 0.25	1.29 ± 0.07	1.80 ± 0.24	7.23 ± 3.88	8.02 ± 2.84	14.38 ± 2.36
ICRL	1.73 ± 0.47	2.15 ± 0.92	12.32 ± 0.48	13.21 ± 1.81	9.50 ± 2.84	7.50 ± 4.97
ICL (ours)	0.36 ± 0.10	1.26 ± 0.62	1.63 ± 0.89	3.04 ± 1.93	6.84 ± 1.29	10.16 ± 7.49

Learned policy is similar to the expert policy in 5/6 environments

Experiments



Advantages:

- Accurate and sharp constraints
- Can learn complex constraints
- Learns a policy similar to the expert policy in most cases
- Any method can be used for constrained RL
- Works with stochastic dynamics

Future work:

- Learn multiple constraint functions? Or reward with constraints?
- Address unidentifiability
- Learn from suboptimal trajectories?

One-line summary: "new technique to learn soft/expected constraint from expert demonstrations" Please visit our poster!

Location: MH1-2-3-4 #104 Time: 11:30am – 1:30pm (today)

