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Brief Overview

Setting
Improve the distribution robustness when there exist prior shifts 
between training and test datasets, i.e.,
● Shifts in Class Prior ℙ 𝑌 = 𝑖 , with label 𝑌;
● Shifts in Group Prior ℙ 𝐺 = 𝑖 , with hidden attribute 𝐺;



Brief Overview

One sentence summary
A post-hoc approach that performs scaling adjustments to 
predictions from a pre-trained model, via minimizing a 
distributionally robust loss around a target distribution.



Background
Model Robustness under
Distribution Shifts



AKA: Class-Imbalanced Learning

● Basic Setting:
For an 𝑚-class classification task, denote {(𝑥! , 𝑦!)}!"#$ the training 
samples drawn from 𝑋, 𝑌 ~𝒟.
Assume 𝜋% ≔ ℙ(𝑌 = 𝑖) is the class prior.

● Class-level distribution robustness:
Train on imbalanced 𝜋

↓
Aim to perform well on a target prior distribution at the test time

(Test on target 𝜋)

Distribution Shifts in Class Priors

Background



AKA: Group Distributional Robustness

● Basic Setting:
For a 𝑚 -class classification task, denote {(𝑥! , 𝑦! , 𝑎!)}!"#$ the training samples 
drawn from 𝑋, 𝑌, 𝐴 ~𝒟.
𝑎! is the attribute/group information, i.e., male/female. 

● Group-level distribution robustness:
Train on imbalanced group priors 

(without group information in training)
↓

Aim to perform well on a target group prior during the test time

Distribution Shifts in Group Priors

Background



Motivations
Deep neural nets
capture core features well



Deep neural networks could learn the core features sufficiently well, 
even if they appear to perform poorly on minority classes/groups.

[1] Last layer re-training is sufficient for robustness to spurious correlations. 
[ICML 2022 workshop]

Motivation 1



Deep neural networks could learn the core features sufficiently well, 
even if they appear to perform poorly on minority classes/groups.

[1] Last layer re-training is sufficient for robustness to spurious correlations. 
[ICML 2022 workshop]

Motivation 1 😎: Learn good 
representation 



Deep neural networks could learn the core features sufficiently well, 
even if they appear to perform poorly on minority classes/groups.

[1] Last layer re-training is sufficient for robustness to spurious correlations. 
[ICML 2022 workshop]

Motivation 1 😎: Learn good 
representation 

😏: Retraining last 
layer is enough



Distribution Robust Evaluation (DRE metric)

DRE 𝐷, 𝛿 : min
&

𝑔% 𝐴𝑐𝑐% , 𝑠. 𝑡. ?
%∈[)]

𝑔% = 1 , 𝑔% ≥ 0,𝐷 𝑔, 𝑢 ≤ 𝛿.

Minimize the weighted sum of per-class/group accuracy 𝐴𝑐𝑐%, where:

𝐷: the divergence; 𝑢: a target distribution; 𝛿: the perturbation;

Special cases
𝛿 = 0 evaluates w.r.t. any target distribution 𝑢; 
𝛿 = ∞ returns the worst class/group accuracy.

Summary: DRE metric measures the worst expected accuracy in a 𝛿-radius ball
around the target distribution 𝑢.

Motivation 2

A spectrum of controlled distribution shifts:



Goal:

min
+

max
&

𝑔% ℙ ,,."% ~𝒟(ℎ+ 𝑋 ≠ 𝑌) ,

𝑠. 𝑡. ?
%∈[)]

𝑔% = 1 , 𝑔% ≥ 0,𝐷 𝑔, 𝑢 ≤ 𝛿.

ℎ+ denotes the deep neural nets. 

🤔: Can we optimize the model performance under the controlled distribution shifts, 
by only shifting the model prediction at the test time?

Goal

😎: Improve the
distributional robustness



Distributional RObust 
PoSt-hoc Approach
Scale the model prediction
at test time (DROPS)



DROPS

😎: Learn good 
representation 

Ours: Shifting the 
model prediction 
only at test time!

👍: Test time scaling helps with improving the
robustness under any DRE metric, efficiently.



The intuition

1. Down-scale: 
The model predicted probability of majority training classes at the test time.

1. Up-scale: 
The model predicted probability of minority training classes at the test time.

DROPS
😎: Learn good 
representation Ours: Shifting the 

model prediction 
only at test time!



How to scale model predictions

Class-imbalanced setting

min
1:𝒳→∆!

max
&∈𝔾(8)

?
%"#

)

𝑔%ℓ%(𝑓) . (1)

Clarifications
ℓ%(𝑓) is the expected loss for each class,
𝔾 𝛿 = {𝑔 ∈ ∆)|𝐷(𝑔, 𝑢) ≤ 𝛿}, where:
𝐷: ∆)×∆)→ ℝ: is the divergence;
𝑢 is a target distribution, 𝛿 is the perturbation.

DROPS

Minimize the sum of
worst-case re-weighted
per-class loss

Generates optimal
class-weights 𝑔%∗



How to scale model predictions

Class-imbalanced setting

𝐃𝐑𝐎𝐏𝐒: ℎ(𝑥) ∈ argmax
%∈[)]

𝑔%∗

𝜋%
d �̂�%(𝑥) . (2)

Clarifications
�̂�%(𝑥) is the predicted probability of sample 𝑥 belonging to class 𝑖;

Insights
Model prediction of class 𝑖 is upscaled by DROPS if:
(1) A large weight 𝑔%∗ is assigned; or (2) Class 𝑖 has a small prior 𝜋%.

DROPS



An Empirical Sketch (DROPS)

Solve the Lagrangian form of Eqn. (1) via a validation set for a number of
iterations.

At iteration 𝑡, do:

• Step 1: updating the Lagrangian multiplier 𝜆(<);
• Step 2: updating the weights 𝑔(<);
• Step 3: scaling the predictions.

DROPS



Experiments
On class-imbalanced learning
& Group distributional robustness



Experiments on Class-Imbalanced Learning

Synthetic class-imbalanced CIFAR-10 & CIFAR-100

● Simulation: with the increasing of class index, # of selected samples per class 
has an exponential decay.
Imbalance ratio: 𝜌 =

=>?
"

@"

=AB
"

@"
.

● Train on imbalanced dataset; validate and test on balanced datasets.
● For DROPS, get 𝑔%∗ under different perturbation level 𝛿CD>AB, under 𝐷EF.
● Performance evaluation: for both 𝐷EF and 𝐷GHEF, report the model 

performance in the metric DRE 𝐷, 𝛿CIJC , with a list of 𝛿CIJC.  

Experiments



Experiments on Class-Imbalanced Learning

CIFAR-10 (imbalance ratio 𝜌 = 100) – under DRE 𝐷EF, 𝛿CIJC

X axis: divergence from the target distribution 𝛿CIJC;
Y-axis: DRE 𝐷, 𝛿CIJC ; Higher curve à More robustness

Experiments



Experiments on Class-Imbalanced Learning

CIFAR-10 (imbalance ratio 𝜌 = 100) – under DRE 𝐷GHEF, 𝛿CIJC

Experiments



Experiments on Class-Imbalanced Learning

CIFAR-100 (imbalance ratio 𝜌 = 100) – under DRE 𝐷EF, 𝛿CIJC

Experiments



Experiments on Class-Imbalanced Learning

CIFAR-100 (imbalance ratio 𝜌 = 100) – under DRE 𝐷GHEF, 𝛿CIJC

Experiments



Experiments on Group Distributional Robustness (DRO)

Experiments



Theoretical Results

● Theorem 1 and Lemma 2: the optimal scaling of DROPS;
● Section 4.2: empirical implementation of DROPS;
● Theorem 3: convergence analysis of DROPS.

Empirical Results

● Table1: Experiments results of class-imbalanced CIFAR datasets;
● Table2: Experiments of group distributional robustness on Waterbirds, CelebA.

Guidelines for More Results



Paper and Code

Paper Code

Thanks for watching!


