Transformer Meets Boundary Value Inverse Problems

Ruchi Guo (UC Irvine), Shuhao Cao (UMKC), and Long Chen (UC Irvine)

The Eleventh International Conference on Learning Representations (ICLR 2023) arXiv:cs.LG/2209.14977
() https://github.com/scaomath/eit-transformer

School of Science and Engineering

Attention is all we need?

(left) Google search results on "Transformers".
Credit: Paramount Pictures.
(Right) Jay Alammar: The Illustrated Transformers: BERT,
ELMo, and companies.
"Google replaced the original Google Neural Machine Translation system in Google Translate with a Transformer encoder ${ }^{1}$ and an RNN decoder, implemented in TensorFlow." 2

[^0]
Attention is all we need?

Median Free-Modelling Accuracy

July 2021: AlphaFold 2 uses a Transformer to map the input of a multiple sequence alignment (MSA) consisting amino acids to the output of the 3D structure of a protein.

Source: Nature \& Deepmind.

[^1]
Attention is all we need?

(Left) Stable Diffusion by Stability Al^{5}. (Right) AlphaTensor by Deepmind.

[^2]
Attention is all we need?

Better Language Models and Their Implications

We've trained a large-scale unsupervised language model which generates coherent paragraphs of text, achieves state-of-the-art performance on many language modeling benchmarks, and performs rudimentary reading comprehension, machine translation, question answering, and summarization-all without taskspecific training.

February 14, 2019
24 minute read

GPT (117m), GPT-2 (1.2b), GPT-3 (175b). OpenAI ${ }^{6}$.

[^3]
Attention is all we need?

ChatGPT: Optimizing Language Models for Dialogue

We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests. ChatGPT is a sibling model to InstructGPT, which is trained to follow an instruction in a prompt and provide a detailed response.

ChatGPT. OpenAI ${ }^{7}$.

[^4]
Electrical Impedance Tomography (EIT)

(Left)A 10-day-old infant with EIT electrodes ${ }^{8}$. By performing lung function imaging of newborns, timely diagnosis and treatment of lung diseases in early development of newborns without radiation damage can be done. (Right) Working principle of a 16 electrode system. Adjacent excitation is to select a pair of adjacent electrodes to input safe current, and then measure the output voltage between several pairs of adjacent electrodes except the excitation source.

[^5]How does "Transformer", the backbone of all language models, has anything to do with "Boundary Value Inverse Problems" such as EIT?

The mathematical formulation of EIT

Several instances of inclusion $\sigma(\cdot)$.

The forward model of EIT

$$
\nabla \cdot(\sigma \nabla u)=0 \quad \text { in } \Omega, \quad \text { where } \sigma=\sigma_{1} \text { in } D, \text { and } \sigma=\sigma_{0} \text { in } \Omega \backslash \bar{D} .
$$

■ Current: $g=\left.\sigma \nabla u \cdot \boldsymbol{n}\right|_{\partial \Omega}$ (Neumann boundary condition)
■ Voltages: $f=\left.u\right|_{\partial \Omega}$ (Dirichlet boundary condition)
Neumann-to-Dirichlet (NtD) mapping:

$$
\Lambda_{\sigma}: H^{-1 / 2}(\partial \Omega) \rightarrow H^{1 / 2}(\partial \Omega), \quad g=\left.\sigma \nabla u \cdot \boldsymbol{n}\right|_{\partial \Omega} \xrightarrow{\text { solve }(\star)} f=\left.u\right|_{\partial \Omega}
$$

Inverse Problem of EIT

Forward and inverse operator

$$
\mathcal{F}: \sigma \mapsto \Lambda_{\sigma}, \quad \text { and } \quad \mathcal{F}^{-1}: \Lambda_{\sigma} \mapsto \sigma
$$

- The measurement on $\partial \Omega$.
- The coefficient to be recovered.

■ What we need (optimistically) is "knowing Λ_{σ} ": for a set of basis $\left\{g_{l}\right\}_{l=1}^{\infty}$ of the corresponding Hilbert space, one can measure all the current-to-voltage pairs $\left\{g_{l}, f_{l}:=\Lambda_{\sigma} g_{l}\right\}_{l=1}^{\infty}$ and construct the infinite dimensional matrix \boldsymbol{A}_{σ}.

$$
\boldsymbol{f}=\boldsymbol{A}_{\sigma} \boldsymbol{g}
$$

where \boldsymbol{g} and \boldsymbol{f} are (infinite dimensional) vector representations of functions g and f.

- BCR-Net ${ }^{9}$ is a DNN approximation of \mathcal{F}^{-1} based on a large but finite sized matrix $\widetilde{\mathrm{A}}_{\sigma}$ as an accurate approximation to A_{σ}.

[^6]
Inverse Problem of EIT

Question

What if the full spectrum of Λ_{σ} is not accessible?
Can we use only a few data pairs $\left\{\left(g_{l}, f_{l}\right)\right\}_{l=1}^{L}$ for reconstruction?
Forward and inverse operator with limited data pairs:

$$
\mathcal{F}_{L}: \sigma \mapsto\left\{\left(g_{1}, \Lambda_{\sigma} g_{1}\right), \ldots,\left(g_{L}, \Lambda_{\sigma} g_{L}\right)\right\} \text { and } \mathcal{F}_{L}^{-1}:\left\{\left(g_{1}, \Lambda_{\sigma} g_{1}\right), \ldots,\left(g_{L}, \Lambda_{\sigma} g_{L}\right)\right\} \mapsto \sigma
$$

- Extremely ill-posed or even not well-defined: the same boundary measurements may correspond to different $\sigma{ }^{10}$.
■ In $\boldsymbol{f}=\boldsymbol{A}_{\sigma} \boldsymbol{g}$, for $\boldsymbol{g}_{l}=\boldsymbol{e}_{l}, I=1, \ldots, L$, with \boldsymbol{e}_{l} being unit vectors of a chosen basis, $\left(\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{L}\right)$ only gives the first L columns of \boldsymbol{A}_{σ}.
- Restricting \mathcal{F}_{L}^{-1} at a compact set of sampled data $\mathbb{D}:=\left\{\sigma^{(k)}\right\}_{k=1}^{N}$.

[^7]
From EIT to deep learning

- Learn an approximation to $\mathcal{F}_{L, \mathbb{D}}^{-1}:\left\{\left(g_{1}, \Lambda_{\sigma^{(k)}} g_{1}\right), \ldots,\left(g_{L}, \Lambda_{\sigma^{(k)}} g_{L}\right)\right\} \mapsto \sigma^{(k)}$.
- "Well-defined" enough as a high-dimensional interpolation (learning) problem on a compact data submanifold ${ }^{11}$ with an end-to-end setting. Then generalization can be done for newly incoming σ 's.
- The incomplete information of Λ_{σ} due to small L for one single σ is compensated by a large $N \gg 1$ sampling of different σ 's.

[^8]
From EIT to deep learning

- What is an appropriate finite dimensional data format as inputs to the neural network?
■ Is there a suitable neural network matching the mathematical structure?

Inspiration: direct sampling

Generate ϕ_{l} : the harmonic extension of $f_{l}-\Lambda_{\sigma_{0}} g_{l}$

$$
\nabla \cdot(\sigma \nabla u)=0 \quad \text { in } \Omega, \quad \text { where } \sigma=\sigma_{1} \text { in } D, \text { and } \sigma=\sigma_{0} \text { in } \Omega \backslash \bar{D} \text {. }
$$

$-\Delta \phi_{l}=0 \quad$ in $\quad \Omega, \quad \mathrm{n} \cdot \nabla \phi_{l}=\left(f_{l}-\Lambda_{\sigma_{0}} g_{l}\right)=\left(\Lambda_{\sigma}-\Lambda_{\sigma_{0}}\right) g_{l} \quad$ on $\quad \partial \Omega, \quad \int_{\partial \Omega} \phi_{l} \mathrm{~d} s=0$,

(a)

(b)

(c)

(d)

EIT problem: (a)-(c) the input $\left\{\phi_{l}\right\}_{l=1}^{L}$ are harmonic extensions "features" for true σ (d).

Operator learning for EIT as a tensor2tensor problem

More examples of direct sampling: (Ideal) NtD map Λ_{σ} 's whole spectrum ($L=\infty$) can recover the inclusion σ with various interfaces. (Practice) "learn" a single parametrized operator T_{θ} that maps (a few, $L \leq 3$) harmonic extension features to reconstruct the inclusions.

From positional embedding to the grid of a discretization

■ Re-interpreting the latent representation in $\mathbb{R}^{n \times d}$ from:

$$
\text { Row }=A \text { word in a sentence }
$$

Column $=\mathrm{A}$ basis function in a Hilbert subspace.

- The columns of Query/Key/Value contain the learned basis functions spanning certain subspaces of different Hilbert spaces.
- The column spaces of Query/Key/Value will be enriched by $\operatorname{span}\left\{w_{j} \in \mathbb{X}_{h}: w_{j}\left(x_{i}\right)=\left(\sigma_{s}(x)\right)_{i j}, 1 \leq j \leq d\right\} \subset \mathcal{H}$ to try to capture how an operator of interest responses to the subset of inputs.

Galerkin-type attention inspired by PDE

- In this linear attention regime: Q : values, K : query, V : keys.
- If K and V are orthornormal pairwise, then this is a (learnable) Petrov-Galerkin projection ! ${ }^{12}$

[^9]
Inspiration: direct sampling

Direct sampling method for EIT ${ }^{13}: f-\Lambda_{\sigma_{0}} g \rightarrow \phi \rightarrow \boldsymbol{d} \rightarrow \eta_{x}$.

$$
\mathcal{I}_{1}^{D}(x):=\frac{\boldsymbol{d}(x) \cdot \nabla \phi(x)}{\left\|f-\Lambda_{\sigma_{0}} g\right\|_{L^{2}(\partial \Omega)}\left|\eta_{x}\right|_{H^{s}(\partial \Omega)}}
$$

where

$$
-\Delta \eta_{x}=-\boldsymbol{d}(x) \cdot \nabla \delta_{x} \quad \text { in } \quad \Omega, \quad \boldsymbol{n} \cdot \nabla \eta_{x}=0 \quad \text { on } \quad \partial \Omega, \quad \int_{\partial \Omega} \eta_{x} \mathrm{~d} s=0
$$

- The empirical formula of $\mathcal{I}^{D}(x)$ can be written as an integral with Gaussian-like density, that attains maximum values for $x \in D$.
- The accuracy is much limited by some empirical choices of quantities such as the probing direction $\boldsymbol{d}(x)$ and $s=3 / 2$.
- This type of simple formula in direct sampling can be derived only for a single data pair.

[^10]
From direct sampling to attention integral

- The global information of ϕ used as "keys" to locate a point x to probe.

$$
\hat{\mathcal{I}}_{1}^{D}(x):=R(x) \int_{\Omega} \boldsymbol{d}(x) \cdot \mathcal{K}(x, y) \nabla \phi(y) \mathrm{d} y .
$$

- The probing direction $\boldsymbol{d}(x)$ as "query" is assumed to depend globally on ϕ

$$
\boldsymbol{d}(x):=\int_{\Omega} \mathcal{Q}(x, y) \nabla \phi(y) \mathrm{d} y .
$$

Choice of the probing direction in direct sampling ${ }^{14}$: If $\mathcal{Q}(x, y)=\delta_{x}(y) /\|\nabla \phi(x)\|$, then $\boldsymbol{d}(x)=\nabla \phi(x) /\|\nabla \phi(x)\|$.

- In $R(x),|\cdot|_{Y}$ is assumed to be $\left|\eta_{X}\right|_{Y}^{2}:=\left(\mathcal{V} \eta_{X}, \eta_{X}\right)_{L^{2}(\partial \Omega)}$, where η_{X} is the potential using the probing as source. If \mathcal{V} induces a Gaussian-like kernel which the attention kernel does induce ${ }^{15}$, the index function can achieve maximum values for points inside D.

[^11]
An architectural advantage of $\left(Q K^{\top}\right) V$

Theorem (Frequency bootstrapping (simplified informal 1D version) ${ }^{16}$)
Suppose there exists a channel I in the current latent representation such that $\left(V_{i}\right)_{l}=\sin \left(a z_{i}\right)$ for some $a \in \mathbb{Z}^{+}$, the current finite-channel sum attention kernel approximates a "nice" kernel to an error of $O(\epsilon)$ with only "lower frequency" modes. Then, there exists a set of weights such that certain channel k^{\prime} in the output of the attention layer approximates $\sin \left(a^{\prime} z\right), \mathbb{Z}^{+} \ni a^{\prime}>a$ with comparable error.

- Heuristics: multiplicative neural architecture can use data-driven basis functions to characterize operators.

$$
u_{l}(z)=h^{2} \sum_{x \in \mathcal{M}}(q(z) \cdot k(x)) v_{l}(x) \delta_{x} \approx \int_{\Omega} \kappa_{\theta}(z, x) v_{l}(x) d \mu(x) .
$$

- Proof: use the tools of Pincherle-Goursat (degenerate) kernels for $\kappa_{\theta}(z, x ; v)=\sum_{l=1}^{N} q_{l}(x ; v) k_{l}(z ; v)$.

[^12]
Attention is all we need?

Figure: Schematics of a modified attention layer of the Transformer-based operator learner.

- Positional embedding: At each resolution, The 2D $\sqrt{M} \times \sqrt{M}$ Cartesian grid.
- ResNet DoubleConv: The double convolution block is modified ${ }^{17}$ from that commonly seen in Computer Vision CNN ${ }^{18}$.
- The "interaction" (attention matrix) between different latent representations can be computed using coarse latent representations.

[^13]
Drop-in replacement of U-Net

The schematics of the U-Transformer that follows U-Net ${ }^{1920}$. The input is the concatenation of discretizations of ϕ and $\nabla \phi$. The output is the approximation to the index map \mathcal{I}^{D}. The numbers of latent basis functions (channels) are annotated below each representation. \square 3×3 convolution + ReLU; \square : normalization; \square : interpolation; \square : cross attention from the coarse grid to the fine grid; \square : input and output discretized functions.

[^14]
Electrical impedance tomography (EIT)

- Noise: $\xi=\xi(x)$ is assumed to be $\xi(x)=\left(f(x)-\Lambda_{\sigma_{0}} g(x)\right) \tau G(x)$ where τ specifies the percentage of noise, and $G(x)$ is a Gaussian distribution.

	Relative L^{2} error			Position-wise cross entropy			Dice coefficient			\# params
	$\tau=0$	$\tau=0.05$	$\tau=0.2$	$\tau=0$	$\tau=0.05$	$\tau=0.2$	$\bar{\tau}=0$	$\tau=0.05$	$\tau=0.2$	
U-Net	0.200	0.341	0.366	0.0836	0.132	0.143	0.845	0.810	0.799	7.7 m
FNO2d ${ }^{21}$	0.318	0.492	0.502	0.396	0.467	0.508	0.650	0.592	0.582	10.4 m
Hybrid UT ${ }^{22}$	0.185	0.320	0.333	0.0785	0.112	0.116	0.877	0.829	0.821	11.9m
Cross-Attention UT ${ }^{23}$	0.171	0.305	0.311	0.0619	0.105	0.109	0.887	0.840	0.829	11.4 m
U-Net+Coarse Attn	0.184	0.343	0.360	0.0801	0.136	0.147	0.852	0.807	0.804	8.4 m
UIT (ours)	0.163	0.261	0.272	0.0564	0.0967	0.0981	0.897	0.858	0.845	11.4 m
UIT $+(L=3)$ (ours)	0.147	0.250	0.254	0.0471	0.0882	0.0900	0.914	0.891	0.880	11.4 m

${ }^{21}$ Z. Li et al. (2021). "Fourier Neural Operator for Parametric Partial Differential Equations". In: The Ninth International Conference on Learning Representations (ICLR 2021).
${ }^{22}$ Y. Gao, M. Zhou, and D. N. Metaxas (2021). "UTNet: a hybrid transformer architecture for medical image segmentation". In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 61-71.
${ }^{23} \mathrm{H}$. Wang et al. (2022). "Mixed transformer u-net for medical image segmentation". In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 2390-2394.

Reconstruction for unseen samples

(a) U-Net $(7.7 \mathrm{~m})$
$L=1$

(e) Multiwavelet NO (9.8m) $L=1$

(b) U-Net (33m)
$L=3$

(f) Adaptive FNO (10.7m) $L=1$

(c) FNO 2 d (10.4m)
$L=1$

(g) UIT (11.4m) $L=1$

(d) FNO2d big (33m) $L=1$

Acknowledgments

- L. Chen is supported in part by National Science Foundation grants DMS-1913080 and DMS-2012465, and DMS-2132710.
- S. Cao is supported in part by National Science Foundation grants DMS-1913080 and DMS-2136075.
- The hardware to perform the experiments are sponsored in part by NSF grants DMS-2136075 and UMKC School of Science and Engineering computing facilities.
- The ICLR area chair for handling the paper, and anonymous reviewers for the suggestions to improve the paper.

[^0]: ${ }^{1}$ A. Vaswani et al. (2017). "Attention is all you need". In: Advances in Neural Information Processing Systems (NIPS 2017). Vol. 30.
 ${ }^{2}$ https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html

[^1]: ${ }^{3}$ AlphaFold: a solution to a 50 -year-old grand challenge in biology https://deepmind.com/blog/ article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
 ${ }^{4}$ J. Jumper et al. (2021). "Highly accurate protein structure prediction with AlphaFold". In: Nature 596.7873, pp. 583-589.

[^2]: ${ }^{5}$ R. Rombach et al. (2022). "High-resolution image synthesis with latent diffusion models". In: Proceedings of the IEEE/CVF Conference on CVPR, pp. 10684-10695.

[^3]: ${ }^{6}$ J. Kaplan et al. (2020). "Scaling laws for neural language models". In: arXiv preprint arXiv:2001.08361.

[^4]: ${ }^{7}$ N. Stiennon et al. (2020). "Learning to summarize with human feedback". In: Advances in Neural Information Processing Systems (NeurIPS 2020) 33, pp. 3008-3021.

[^5]: ${ }^{8} \mathrm{Y}$. Shi et al. (2021). "The research progress of electrical impedance tomography for lung monitoring". In: Frontiers in Bioengineering and Biotechnology 9.

[^6]: ${ }^{9}$ Y. Fan and L. Ying (2020). "Solving electrical impedance tomography with deep learning". In: Journal of Computational Physics 404, p. 109119.

[^7]: ${ }^{10} \mathrm{~V}$. Isakov and J. Powell (1990). "On the inverse conductivity problem with one measurement". In: Inverse Probl. 6, p. 311.

[^8]: ${ }^{11}$ O. Ghattas and K. Willcox (2021). "Learning physics-based models from data: perspectives from inverse problems and model reduction". In: Acta Numerica 30, pp. 445-554.

[^9]: ${ }^{12}$ S. Cao (2021). "Choose a Transformer: Fourier or Galerkin". In: Advances in Neural Information Processing Systems (NeurIPS 2021). Vol. 34. eprint: 2105.14995 (cs.LG).

[^10]: ${ }^{13}$ Y. T. Chow, K. Ito, and J. Zou (2014). "A direct sampling method for electrical impedance tomography". In: Inverse Probl. 30.9, p. 095003.

[^11]: ${ }^{14} \mathrm{M}$. Ikehata (2000). "Reconstruction of the support function for inclusion from boundary measurements". In: Journal of Inverse and III-posed Problems 8.4, pp. 367-378.
 ${ }^{15}$ H. Peng et al. (2021). "Random Feature Attention". In: International Conference on Learning Representations.

[^12]: ${ }^{16}$ R. Guo, S. Cao, and L. Chen (2023). "Transformer Meets Boundary Value Inverse Problems". In: The Eleventh International Conference on Learning Representations (ICLR 2023)

[^13]: ${ }^{17}$ Z. Liu et al. (2022). "A convnet for the 2020s". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976-11986.
 ${ }^{18} \mathrm{~K}$. He et al. (2016). "Deep residual learning for image recognition". In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778.

[^14]: ${ }^{19}$ O. Ronneberger, P. Fischer, and T. Brox (2015). "U-net: Convolutional networks for biomedical image segmentation". In: International Conference on Medical image computing and computer-assisted intervention. Springer, pp. 234-241.
 ${ }^{20}$ R. Guo and J. Jiang (2021). "Construct Deep Neural Networks based on Direct Sampling Methods for Solving Electrical Impedance Tomography". In: SIAM Journal on Scientific Computing 43.3, B678-B711.

