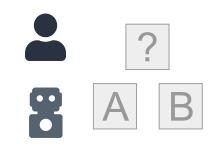
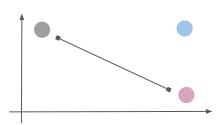
Learning Human-Compatible Representations for Case-Based Decision Support

Han Liu, Yizhou Tian, Chacha Chen, Shi Feng, Yuxin Chen, Chenhao Tan University of Chicago





Examples explain model predictions

Examples in the training set can serve as Justification for model predictions.

Image Classification Task: Butterfly v.s. Moth

Predicted: Butterfly

Justification: A similar-looking Butterfly in the training set

Examples support decision making

Examples in the training set can serve as **Decision Support** for <u>decision makers</u>.

Image Classification Task: Butterfly v.s. Moth

To be Predicted:

Decision Support: A Butterfly and a Moth in the training set

Two desirable properties of ML models

For effective **decision support** and **justification**, two properties are often desired:

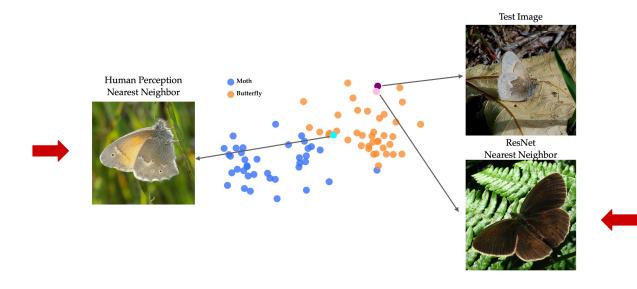
- High autonomous performance
 - An ML model should have satisfying performance on trained tasks

- Transparency and explainability
 - An ML model should provide or be able to derive comprehensible explanations for its predictions

Traditional ML may NOT align with human perception

Projected ImageNet Representations from ResNet (He et al., 2016):

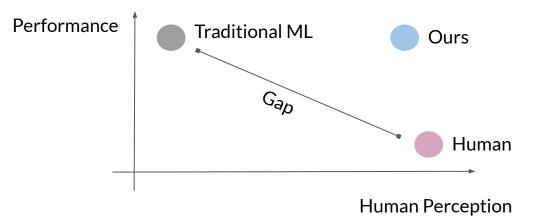
Nearby examples may look very different for humans.



Human-Compatible (HC) Representations

A machine learning model with **two objectives**:

- Achieving high autonomous performance
- Aligned with human perceptions and intuitions



Human-Compatible (HC) Representations

Multi-task learning framework with **two objectives**:

- Task 1: Natural or medical image classification
- Task 2: Human visual similarity judgment prediction
 - Triplet prediction: Two-alternative forced choice (2AFC)

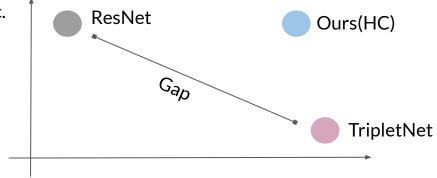


Human-Compatible (HC) Representations

Multi-task learning

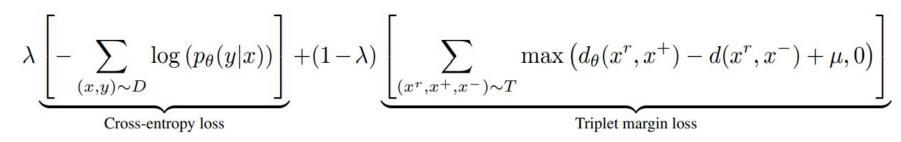
Classification Acc.

- Two decision making tasks for AI
 - Image classification
 - Human judgment prediction



Triplet Prediction Acc.

Loss function



Case-Based Decision Support

Human makes decisions.

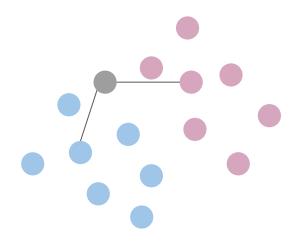
Machine provides examples as decision support.

Question: How do we select the decision support examples?

Decision Support Policies

Three types of support policies:

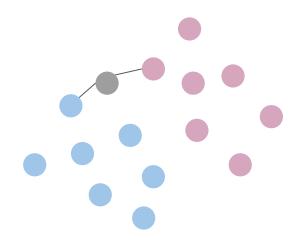
- Random decision support:
 - Random example from each class



Decision Support Policies

Three types of support policies:

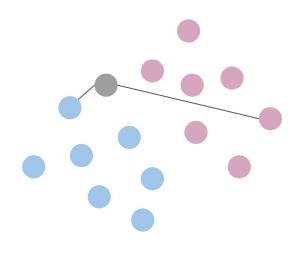
- Random decision support:
 - Random example from each class
- Neutral decision support:
 - Nearest neighbors from each class



Decision Support Policies

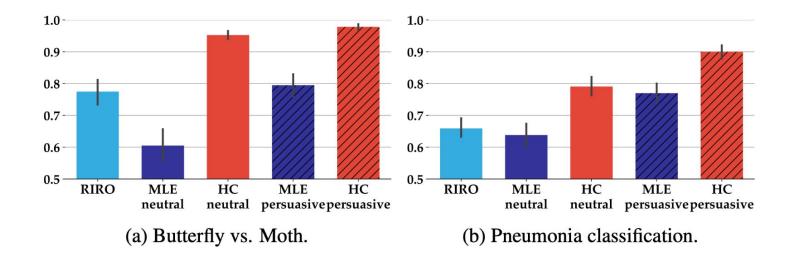
Three types of support policies:

- Random decision support:
 - Random example from each class
- Neutral decision support:
 - Nearest neighbors from each class
- Persuasive decision support:
 - Nearest neighbor from the predicted class
 - Furthest example from the other class(es)



Human subject study (N=50 x 5=250)

Ours (Red) outperforms Random (Blue) and ResNet (Navy).



Takeaways

- We highlight the importance of alignment in representation learning towards effective human-machine collaboration.
- We propose a multi-task learning framework that combines supervised learning and metric learning to simultaneously learn classification and human visual similarity.
- We design a novel evaluation framework for comparing representations in case-based decision support.
- Empirical results with synthetic data and human subject experiments demonstrate the effectiveness of our approach.

Thank you!

Email: <u>hanliu@uchicago.edu</u> Data & Code: <u>https://github.com/ChicagoHAI/learning-</u> <u>human-compatible-representations</u>

📢 Shout-out to my awesome collaborators! 👋

