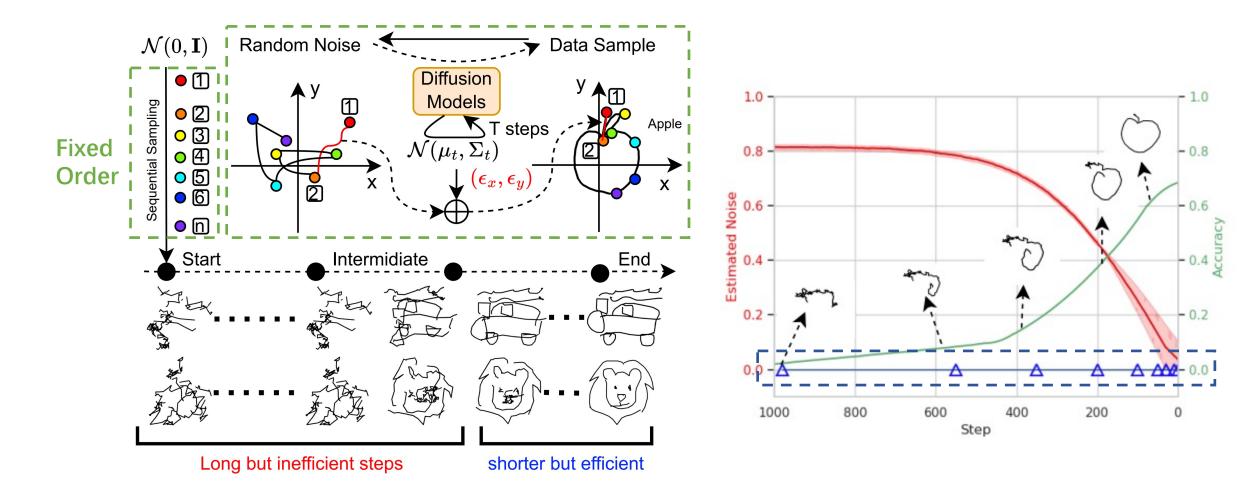


SketchKnitter: Vectorized Sketch Generation with Diffusion Models

Qiang Wang¹, Haoge Deng¹, <u>Yonggang Qi¹</u>*, Da Li², Yi-Zhe Song²

¹Beijing University of Posts and Telecommunications (BUPT), CN ²SketchX, CVSSP, University of Surrey, UK


Motivation

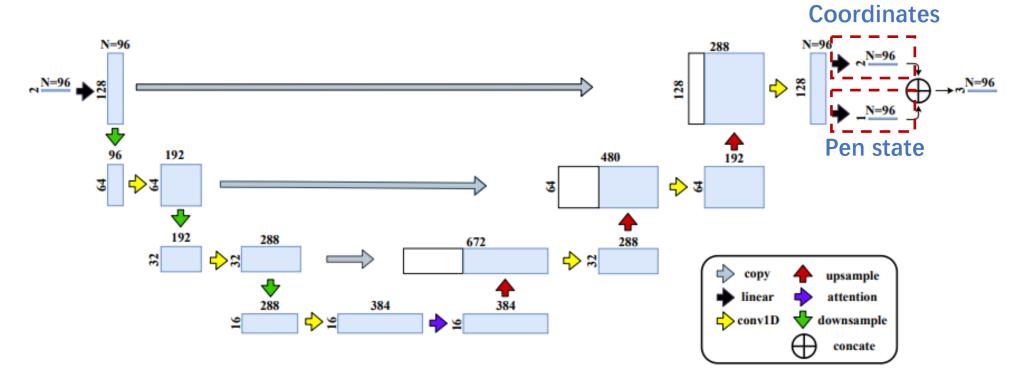
Most approaches for vectorized sketch generation have limited

ability to model complex (long stroke points) sketches!

Our work

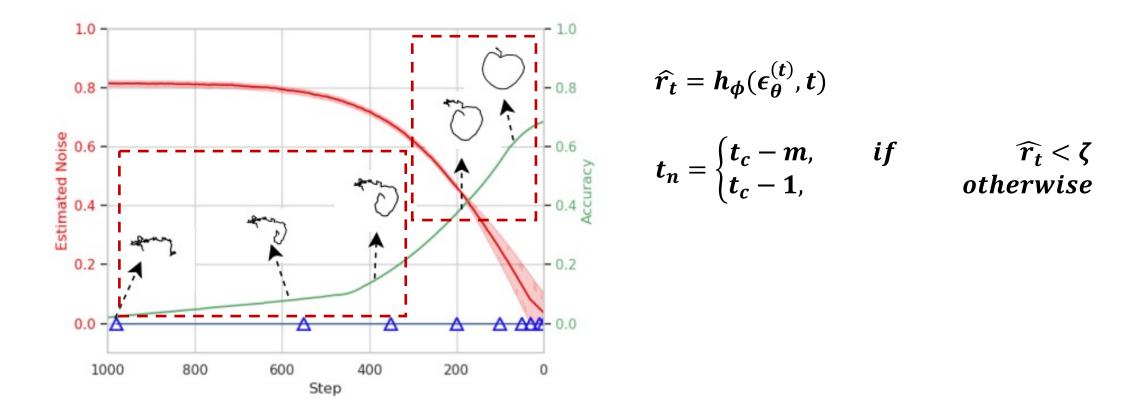
Our Model

- Vectorization representation $s_0 = \{s^1, s^2, ..., s^N\}$ $s^i = (\Delta x^i, \Delta y^i, g^i)$
- Forward Process


$$q(s_{1:T}|s_0) \coloneqq \prod_{t=1}^T q(s_t|s_{t-1}) \qquad q(s_t|s_{t-1}) \coloneqq N(s_t; \sqrt{\frac{\alpha_t}{\alpha_{t-1}}} s_{t-1}, \left(1 - \frac{\alpha_t}{\alpha_{t-1}}\right)I)$$

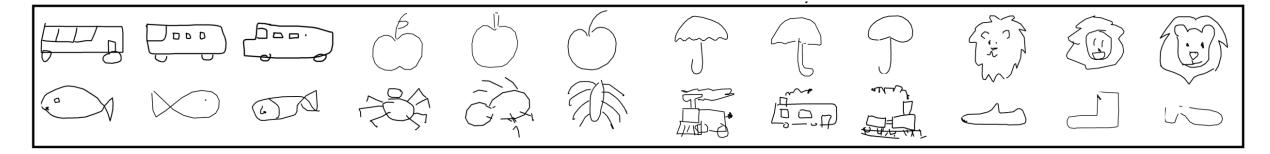
• Backward (Generative) process

$$s_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{s_t - \sqrt{1 - \alpha_t \epsilon_{\theta}^{(t)}(s_t)}}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \frac{\epsilon_{\theta}^{(t)}(s_t)}{\epsilon_{\theta}^{(t)}(s_t)}$$


Our Model

• Noise approximator $\epsilon_{\theta}^{(t)}$

Our Model


• Recognizability based shortcut sampling

Results

Sketch generated from random noise

Unconditional generation

Results

Model	Simple				Moderate					Complex			
WIOdel	FID↓	GS↓	Prec↑	Rec↑	FID↓	GS↓	Prec ↑	Rec↑	FID↓	GS↓	Prec↑	Rec↑	Speed↓
SketchPix2seq		7.0	0.40	0.79	16.4	49.7	0.38	0.75	18.0	73.3	0.36	0.72	0.04
SketchHealer	10.3	5.9	0.45	0.81	12.9	9.8	0.39	0.79	25.9	93.2	0.29	0.63	0.03
SketchRNN	10.8	5.4	0.44	0.82	13.0	11.0	0.42	0.77	21.4	97.6	0.35	0.72	0.03
Diff-HW	13.3	6.8	0.42	0.81	15.9	23.4	0.37	0.76	18.3	64.4	0.23	0.64	0.19
SketchODE	11.5	9.4	0.48	0.74	18.8	29.6	0.31	0.66	33.5	68.1	0.20	0.58	0.03
Ours (full 1000 steps)	6.9	3.4	0.52	0.88	8.4	4.7	0.45	0.87	9.4	5.2	0.42	0.85	1.29
Ours (<i>r</i> -Shortcut, S=30)	7.4	3.9	0.47	0.87	8.9	5.2	0.44	0.85	10.5	6.1	0.39	0.81	0.08
Ours (Linear-DDIMs, S=30)	11.9	6.4	0.38	0.81	13.3	8.8	0.36	0.78	15.1	9.6	0.33	0.72	0.08
Ours (Quadratic-DDIMs, S=30)	12.3	6.6	0.41	0.79	13.8	8.7	0.35	0.76	15.4	9.9	0.34	0.75	0.09
Ours (Abs)	20.7	12.1	0.18	0.55	23.4	64.6	0.13	0.48	29.4	98.9	0.10	0.39	0.20
Ours (Point-Shuffle)	9.5	5.3	0.35	0.72	11.3	7.5	0.31	0.65	12.4	8.1	0.20	0.61	0.18
Ours (Stroke-Shuffle)	8.2	3.8	0.36	0.74	9.6	7.4	0.34	0.66	10.3	7.6	0.25	0.62	0.18

Results

DL .			Recog	gnition			Retrieval									
DL	acc@1(%)			acc@10(%)			mAP			acc@1(%)				acc@10(%)		
_	51.9	52.4 ((+0.90)	87.7	90.2 (+	2.50)	0.704	0.789	(+0.045)	67.4	73.3	(+5.90) 91.3	96.2	(+4.9) ()
10%	1	48.9 ((+3.20)	82.3	82.4 (+				(+0.064)			•) 92.1	1	`	,
20%	33.0	47.3 ((+14.3)	68.2	81.9 (+	13.7)	0.607	0.772	(+0.165)	55.8	72.8	(+17.0) 81.8	94.7	(+12	, .9)
30%	20.6	48.2 ((+27.6)	51.5	81.9 (+	30.4)	0.496	0.787	(+0.291)	46.9	72.8	(+25.9) 68.9	95.0	(+26	.1)
50%	7.29	50.1 ((+42.8)	27.1	84.3 (+	57.2)	0.328	0.786	(+0.458)	28.6	74.9	(+46.3	3) 47.8	96.3	(+48	.5)
		0	91-			ዮኆ		- 0-		0	\bigcirc	Ma.			_	
Condition	S.	qp	S	F.S	Creek	Ę	UM				J			-22	Y	NAN NAN NAN
Ours	Ð,	Ŵ	ľ.				i jim		000	A	F			Z	$\frac{1}{2}$	
Sketch-RNI	RAF	A.	E	J.			> RAA	The Line		Ð	\mathcal{T}			°	Ð	
SketchODE	- fj	R	I					Żo	0-0	\bigcirc		$\textcircled{\textcircled{3}}$			\bigcirc	\smile
BezierSketc	h Č	hot	Ji'i		Jer)	Ş		- 060	NY VAJ	C.I.I	\int	(0)	\bigcirc	D		(H)

Conclusion

- We show for the first time sketch generation can be formulated as a process of deformation-based denoising.
- We devise a recognition-based skip function for a more efficient sampling.
- Model trained for unconditional generation could be readily extended for conditional generation by incorporating a perceptual similarity based gradients into the sampling.

For further details and code, please see our paper and visit our GitHub page at: <u>https://github.com/XDUWQ/SketchKnitter</u>

Thank you!