

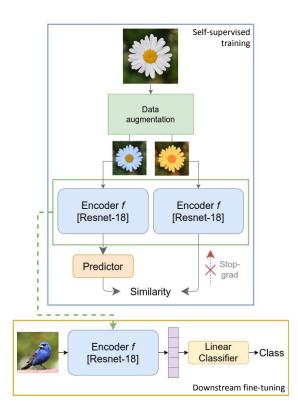
Planckian Jitter: countering the color-crippling effects of color jitter on self-supervised training

Simone Zini¹, Alex Gomez-Villa², Marco Buzzelli¹, Bartłomiej Twardowski^{2,4}, Andrew D. Bagdanov³, Joost van de Weijer²

¹ Department of Informatics Systems and Communication, University of Milano – Bicocca, Milan, Italy ² Computer Vision Center, Universitat Autònoma de Barcelona, Barcelona, Spain ³ Media Integration and Communication Center, University of Florence, Florence, Italy ⁴ IDEAS NCBR, Warsaw, Poland

Self-supervised training and color jitter

- Self-supervised training:
 - Pretrain a model using only positive examples
 - Exploit self-consistency and data augmentation (jitter)
 - Use as starting point to train other downstream tasks
- The effects of color jitter:
 - Produces the best results in common downstream tasks
 - How does it impact color-sensitive downstream tasks?
 - Jitter induces invariance to the same transformations



Chen, X., & He, K. (2021). Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 15750-15758).

Planckian Jitter: countering the color-crippling effects of color jitter on self-supervised training - ICLR 2023

Default Color Jitter

- Transformations
 - Hue and saturation change ()
 - Random grayscale 🌔 🚯
 - Brightness and contrast change ()
- Experimental setup
 - Pretraining: SimSiam ^[Chen 2021]
 - Downstream tasks:
 - **CIFAR-100** (chromatic variations are irrelevant)

 \rightarrow Default Color Jitter induces invariance

- **FLOWERS-102** (color information is critical)
 - \rightarrow Default Color Jitter degrades the performance

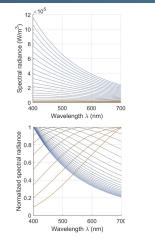
AUGMENTATION		
	CIFAR-100	FLOWERS-102
None	41.93%	36.47%
Default Color Jitter	↑ 59.93%	↓ 30.00%

Chen, X., & He, K. (2021). Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 15750-15758).

Planckian Jitter: countering the color-crippling effects of color jitter on self-supervised training - ICLR 2023

Planckian Jitter

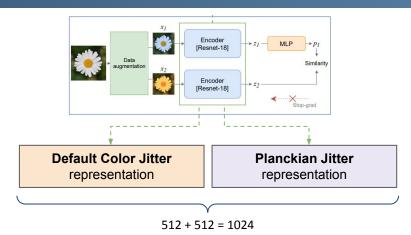
- Alternative color data augmentation based on the physical properties of light
 - Sample illuminant spectrum $\sigma_T(\lambda)$
 - from the distribution of a **black-body radiator**
 - Transform the sampled spectrum into sRGB $ho_T \in \mathbb{R}^3$
 - Re-illuminate image via von-Kries-like transform
 - Add brightness and contrast variation
- Effects of Planckian Jitter:
 - Realistic color variations are effective on both tasks,
 - compared to no augmentation
 - On the color-invariant CIFAR-100, Default Color Jitter still achieves better results



AUGMENTATION		
	CIFAR-100	FLOWERS-102
None	41.93%	36.47%
Default Color Jitter	↑ 59.93%	↓ 30.00%
Planckian Jitter	↓ 47.31%	↑ 42.75%

Latent Space Combination (LSC)

- Planckian Jitter
 - Pros: the learned representation yields a high-quality color description of scene objects
 - Cons: the quality of shape/texture representation drops
 (color is used in self-supervision to solve cases where
 previously shape and texture were required)
- To exploit all information, we learn:
 - One representation with Default Color Jitter
 - One representation with Planckian Jitter
 - Concatenate the representations into a single vector
- Results:
 - Improved performance on both tasks

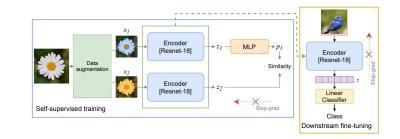


AUGMENTATION		
	CIFAR-100	FLOWERS-102
None	41.93%	36.47%
Default Color Jitter	↑ 59.93%	↓ 30.00%
Planckian Jitter	↓ 47.31%	↑ 42.75%
LSC	↑ 63.54%	↑ 51.66%

Planckian Jitter: countering the color-crippling effects of color jitter on self-supervised training

Simone Zini, Alex Gomez-Villa, Marco Buzzelli, Bartłomiej Twardowski, Andrew D. Bagdanov, Joost van de Weijer

- Overview:
 - Self-supervised training learns representations without labeled data, exploiting data augmentation (jitter)
 - Default Color Jitter deteriorates performance on _ color-sensitive downstream tasks
 - We propose a physics-based Planckian Jitter.
 - Beneficial when the intrinsic color of the objects is . crucial for discrimination.
 - Exploiting both color and shape information (LSC) leads to overall superior results.
- See full paper for:
 - Applicability to other self-learning frameworks (SimCLR, BarlowTwins, VicReg)
 - Effects on other downstream tasks _ (Cub200, VegFru, T1K, USED)
 - Color sensitivity analysis



Download our code at:

https://github.com/TheZino/PlanckianJitter

Already available in Kornia

