

### Instance-wise Batch Label Restoration via Gradients in Federated Learning

Kailang Ma\*, Yu Sun\*, Jian Cui, Dawei Li, Zhenyu Guan, Jianwei Liu

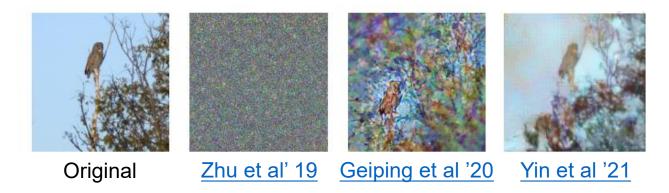
School of Cyber Science and Technology, Beihang University,

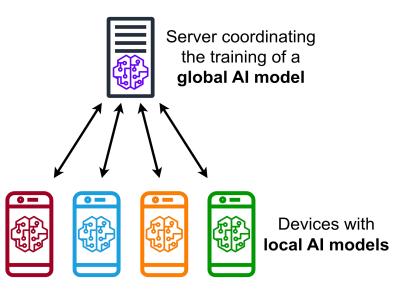


China

# **Background & Motivation**

- Federated Learning: a distributed learning paradigm, asking participants to exchange model updates or gradients instead of raw data.
- Breaking Privacy! Gradient-Matching strategy (Gradient Inversion Attack, GIA) allows for reverse-engineer private input from shared gradients. [Zhu et al' 19, Geiping et al '20...]
  - > Label Restoration remains a challenge.



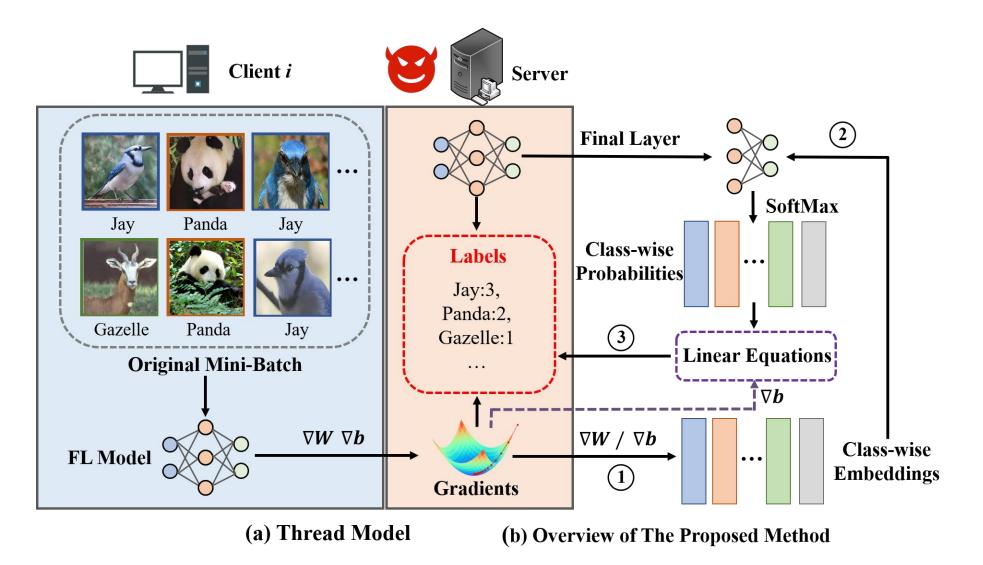


https://en.wikipedia.org/wiki/Federated\_learning

### **Prior Works**

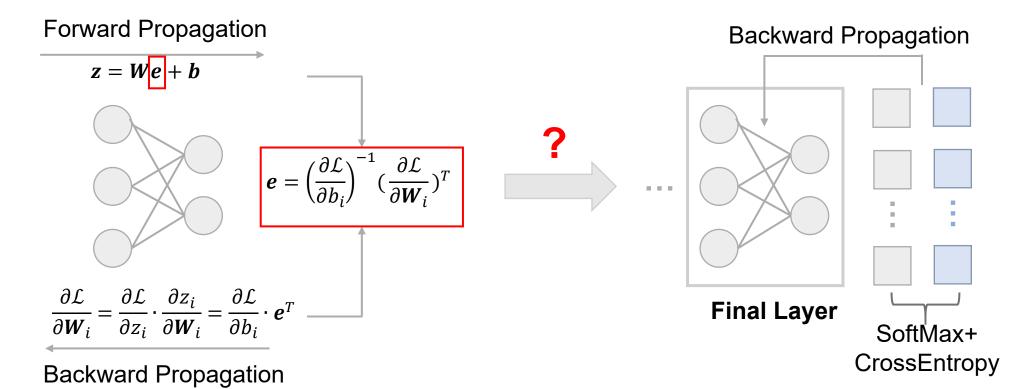
- The optimization-based methods do not perform well [Zhu et al' 19].
- It is possible to extract labels totally by **analytic observation or computation**.
  - Signs of Gradients [Zhao et al' 20, for a single sample; Yin et al '21, from batchaveraged gradients]. (Requires Non-negative Activation Functions).
  - Find a classifier to separate  $q^c$  (gradient column *w.r.t.* the ground truth label *c*) from  $q^{j\neq c}$  by linear programming [Dang et al'21].
  - Existing methods remains limited to identify the presence of categories (i.e., class-wise label restoration).
- → Not only Category but also Frequency (i.e., instance-wise label restoration)

## **Overview of iLRG**



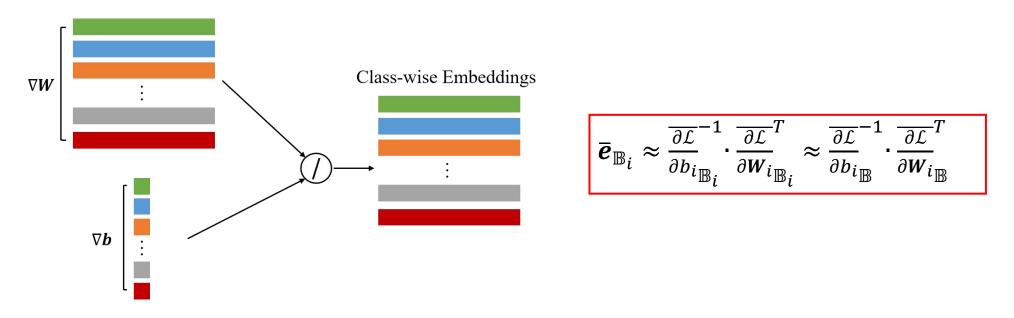
# **Class-wise Embedding Reconstruction**

- A provable **single embedding reconstruction** at **any fully-connected layer** has been proposed.
- $\rightarrow$  Extend to **recover batch embeddings** after average operations?
  - Distinct to Class-Averaged.



## **Class-wise Embedding Reconstruction**

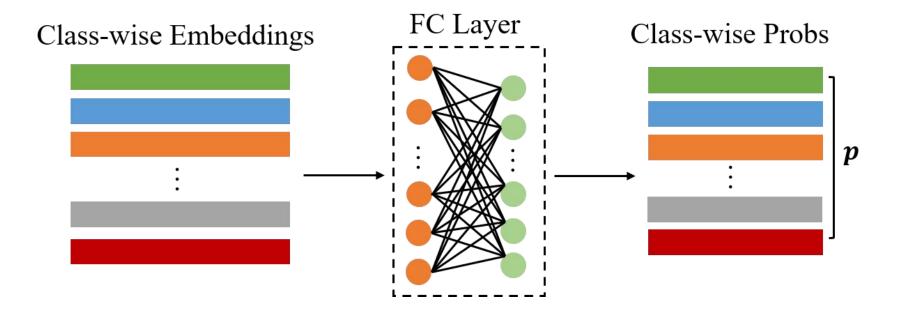
- Two Observations / Approximations (inspired by [Sun et al' 21]):
  - Approx 1 Intra-class Uniformity and Concentration of Embedding Distribution
    - We can replace gradients w.r.t. *i*-class with the arithmetic mean of this category.
  - Approx 2 Inter-class Low Entanglement of Gradient Contributions
    - *i*-class samples mainly contribute to the *i*-th gradient row.



## **Class-wise Probability Reconstruction**

- Feed embeddings into the layer to obtain the subsequent post-softmax probabilities:
  - Approx 3 Average Probabilities from Average Embeddings

$$\circ \quad \overline{\boldsymbol{p}}_{\mathbb{B}_{j}} \approx SoftMax(\mathbf{W}\overline{\boldsymbol{e}}_{\mathbb{B}_{j}} + \boldsymbol{b}).$$



#### **Instance-wise Label Restoration**

- Construct a system of linear equations:
  - Find out that gadient w.r.t. model output z with SoftMax and CrossEntropy
    - $\nabla z_i = p_i y_i$  (difference between post-softmax probabilities and one-hot labels)
    - Equation composition:  $\nabla b_i$ ,  $\overline{p}_{\mathbb{B}_i}$ , K(batch size),  $k_i$ (label frequency) → Targets!

$$k_{1}+\ldots+k_{i}+\ldots+k_{C} = K$$

$$\sum_{j}k_{j}\overline{p}_{i\mathbb{B}_{j}}-K\nabla b_{i} = k_{i}$$

$$\nabla z_{i} \xrightarrow{\sum} \sum_{k} \nabla z_{i}^{k} = \sum_{k} \nabla b_{i}^{k} = K\nabla b_{i}$$

$$\parallel \qquad \parallel \qquad \overline{p}_{\mathbb{B}_{1}} \underbrace{1 \cdot i \cdot \mathbb{C}}_{i} \times \underbrace{k_{1}}_{i} \\ p_{i} \xrightarrow{\sum} \sum_{k} p_{i}^{k} = \sum_{j}k_{j}\overline{p}_{i\mathbb{B}_{j}} = \overline{p}_{\mathbb{B}_{i}} \underbrace{1 \cdot i \cdot \mathbb{C}}_{i} \times \underbrace{k_{i}}_{i} \\ \vdots \\ p_{i} \xrightarrow{\sum} \sum_{k} p_{i}^{k} = \sum_{j}k_{j}\overline{p}_{i\mathbb{B}_{j}} = \overline{p}_{\mathbb{B}_{i}} \underbrace{1 \cdot i \cdot \mathbb{C}}_{i} \times \underbrace{k_{i}}_{k} \\ \vdots \\ p_{i} \xrightarrow{\sum} \sum_{k} y_{i}^{k} = k_{i}$$

**Summation and Decomposition** 

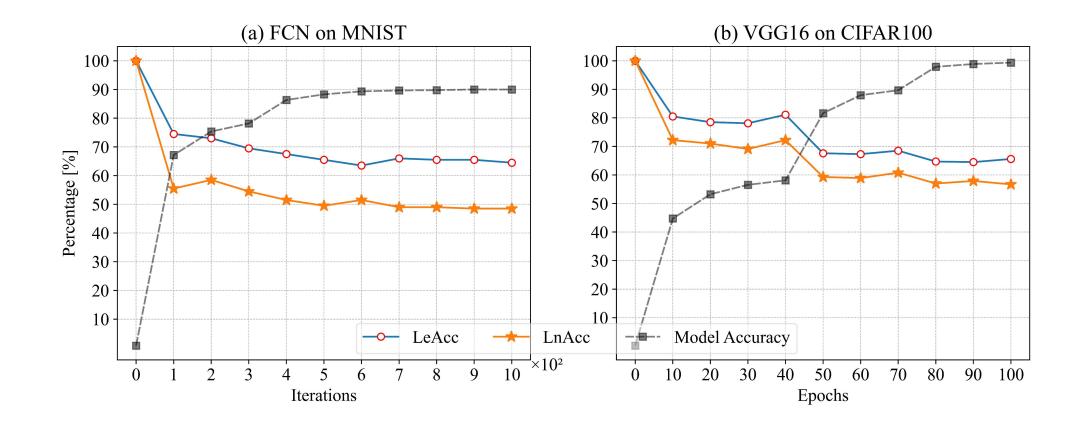
# **Results on Image Classification**

- We show iLRG outperforms prior works across several datasets, architectures and evaluation metrics.
  - Last column shows that recovery of class-wise probabilities are quite precise and corroborate with label restoration accuracies.

| Model     | Dataset  | iDLG  |          | GI    |       | RLG   |       | Ours  |       |        |
|-----------|----------|-------|----------|-------|-------|-------|-------|-------|-------|--------|
|           |          | LeAcc | LnAcc    | LeAcc | LnAcc | LeAcc | LnAcc | LeAcc | LnAcc | CosSim |
| FCN-3     | MNIST    | 0.514 | 12       | 1.000 | 120   | 0.932 | -     | 1.000 | 0.994 | 0.979  |
| LeNet-5   | CIFAR100 | 1.000 | <u></u>  | 1.000 | 20    | 1.000 | -     | 1.000 | 1.000 | 1.000  |
| LeNet-S*  | CIFAR100 | 0.150 | 2        | 0.213 | -     | 1.000 | -     | 1.000 | 1.000 | 1.000  |
| VGG-16    | ImageNet | 1.000 | 2        | 1.000 | 2     | 0.981 | -     | 1.000 | 1.000 | 1.000  |
| ResNet-50 | ImageNet | 1.000 | <u> </u> | 1.000 | -     | 1.000 | -     | 1.000 | 1.000 | 1.000  |

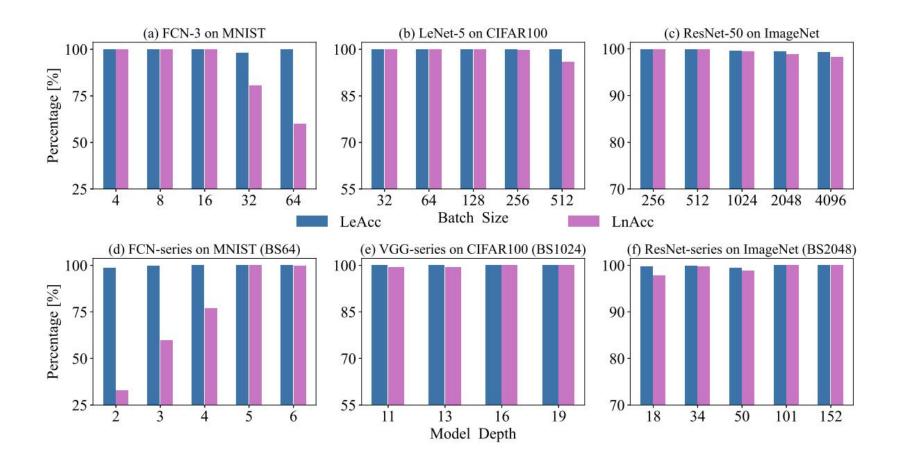
# **Results on Different Training Stages**

- Attack effects **get worse** as training progresses. (performs extremely well for untrained models)
  - Recommend attacking in the early stages.



### **Results on Different Batch Sizes and Model Depths**

- As we raise the batch size, the attack capability **decreases**.
- The attack performance increases as the network deepens.



## **Results on Improved Image Recovery with iLRG**

 iLRG can be used to specify an optimization objective for each instance, which leads to an improved version of GIA.



**MNIST - Ground Truth** 

CIFAR100 - Ground Truth



MNIST - IG, PSNR↑: 12.46, LPIPS↓: 0.4269



CIFAR100 - IG, PSNR↑: 10.02, LPIPS↓: 0.5997



MNIST - Ours, PSNR↑: 18.73, LPIPS↓: 0.1357



CIFAR100 - Ours, PSNR↑: 17.51, LPIPS↓: 0.3439

### Conclusion

- We propose instance-wise Label Restoration from Gradients (iLRG), a method to reveal instance-wise labels and class-wise embeddings via shared batch-averaged gradients in FL.
- We conduct a large number of experiments to demonstrate its effectiveness and explore several factors that may influence it.
- We further **facilitate the existing gradient inversion attacks** by exploiting the recovered labels.

