**Reg-DGM** 

Deep Generative Modeling on Limited Data with Regularization by Nontransferable Pre-trained Models

Yong Zhong $^{12}$ , Hongtao Liu $^{12}$ , Xiaodong Liu $^{12}$ , Fan Bao $^3$ , Weiran Shen $^{12}$ , Chongxuan Li $^{12}$ 

 <sup>1</sup>Gaoling School of Al, Renmin University of China, Beijing, China
 <sup>2</sup>Beijing Key Lab of Big Data Management and Analysis Methods, Beijing, China
 <sup>3</sup>Department of Computer Science Technology, Tsinghua University, Beijing, China

June 9, 2023

## Outline

**Research Background** 

Method

**Convergence Analyses** 

Implementation

Experiments

# **Research Background**

## Introduction

- GANs produce poor samples with limited data.
- The problem is shared by other DGMs.

## **Related Work**

- Data augmentations.
- · Designing new losses.
- Transferring a pre-trained DGM.

# Method

### Motivation

Inspired by the bias-variance dilemma, we propose a complementary framework **Reg-DGM**, which leverages a pre-trained model to reduce the variance of training a DGM with limited data.

### Our Method

Let *x* denote the real or fake sample,  $p_d(x)$  denote the distribution of real data,  $p_g(x)$  denote the generator's distribution,  $\mathbb{D}(\cdot||\cdot)$  denote a proper statistical divergence, and  $\mathcal{R}_f(x) : \mathcal{X} \to \mathbb{R}$  denote the loss from the per-trained model *f*, we can define our objective loss function:

$$\min_{\rho_{g}(x)} \mathbb{D}(\rho_{d}(x)) || \rho_{g}(x)) + \lambda \mathbb{E}_{x \sim \rho_{g}(x)} [\mathcal{R}_{f}(x)],$$
(1)

where  $\lambda \geq 0$  is a hyperparameter to control the relative weight of the two terms.

## Method

## A Prototypical Gaussian-fitting Example

The data distribution is a (univariate) Gaussian  $p_d(x) = \mathcal{N}(x|\mu^*, \sigma^2)$ , where  $\sigma^2$  is known and  $\mu^*$  is the parameter to be estimated. A training sample  $\mathcal{S} = \{x_i\}_{i=1}^m$  is drawn i.i.d. according to  $p_d(x)$ . The hypothesis class for  $p_g$  is  $\mathcal{H} = \{\mathcal{N}(x|\mu, \sigma^2) \mid \mu \in \mathbb{R}\}$ . The regularization term in Eq. (1) is  $\mathcal{E}_f(x) := -\log \mathcal{N}(\hat{\mu}_{\text{PRE}}, \sigma^2)$ , i.e.,  $p_f(x) = \mathcal{N}(x|\hat{\mu}_{\text{PRE}}, \sigma^2)$ .

#### Proposition 2.2

Let  $\beta = \frac{\lambda}{\lambda+1}$  be the normalized weight of the regularization term. In the Gaussian-fitting example, if  $\max\left\{\frac{\sigma^2 - m(\hat{\mu}_{\text{PRE}} - \mu^*)^2}{\sigma^2 + m(\hat{\mu}_{\text{PRE}} - \mu^*)^2}, 0\right\} < \beta < \min\left\{\frac{2\sigma^2}{\sigma^2 + m(\hat{\mu}_{\text{PRE}} - \mu^*)^2}, 1\right\}$ , then the following inequalities holds:

 $\label{eq:MSE} \text{MSE}[\hat{\mu}_{\text{REG}}] < \min\{\text{MSE}[\hat{\mu}_{\text{MLE}}], \text{MSE}[\hat{\mu}_{\text{PRE}}]\}.$ 

## **Convergence** Analyses

Analyses in the Non-parametric Setting

### Theorem 3.1

Under mild regularity conditions in Assumption A.1, for any  $\lambda > 0$ , there exists a unique global minimum of the problem in Eq. (1) with the KL divergence. Furthermore, the global minimum is in the form of  $\rho_g^*(x) = \frac{p_d(x)}{\alpha^* + \lambda \mathcal{E}_f(x)}$ , where  $\alpha^* \in \mathbb{R}$ .

### Theorem 3.2

Under mild regularity conditions in Assumption A.1, for any  $\lambda > 0$ , there exists a unique global minimum of the problem in Eq. (1) with the JS divergence. Furthermore, the global minimum is in the form of  $p_g^*(x) = \frac{p_g(x)}{e^{\alpha^* + \lambda \mathcal{E}_f(x)} - 1}$ , where  $\alpha^* \in \mathbb{R}$ .

## **Convergence** Analyses

Analyses in the Parametric Settings

Theorem 3.3 (Convergence of Reg-DGM (informal))

Under standard and verifiable smoothness assumptions, with a high probability, Reg-DGM with a sufficiently wide ReLU CNN converges to a global optimum of Eq. (1) trained by GD and converges to a local minimum trained by SGD.

# Implementation

### **Base Model**

StyleGAN2, adaptive discriminator augmentation (ADA), and adaptive pseudo augmentation (APA).

#### **Pre-trained Model**

ResNet, CLIP image encode, and FaceNet.

### **Energy Function**

The energy function is defined by the expected mean squared error between the features of a generated sample and a training sample as follows:

$$\mathcal{E}_f(x) := \mathbb{E}_{x' \sim \rho_d} \left[ \frac{1}{d} ||f(x) - f(x')||_2^2 \right]. \tag{3}$$

## Experiments

### Benchmark Results with Limited Data

Table 1: Median FID  $\downarrow$  on FFHQ and LSUN CAT and mean FID  $\downarrow$  on CIFAR-10. <sup>†</sup> and <sup>‡</sup> indicate the results are taken from the references and <u>Karras et al</u> (2020) respectively. Otherwise, the results are reproduced by us upon the official implementation (<u>Karras et al</u>, (2020), <u>Ulang et al</u>, (2021).

| Method                                         | FFHQ   |       | LSUN CAT |        | CIFAR-10        |  |
|------------------------------------------------|--------|-------|----------|--------|-----------------|--|
|                                                | 1k     | 5k    | 1k       | 5k     | 50k             |  |
| Transfer (Wang et al, 2018)                    | 21.42  | 12.34 |          |        |                 |  |
| Freeze-D (Mo et al., 2020)                     | 19.77  | 12.69 |          |        |                 |  |
| DA <sup>†</sup> (Zhao et al, 2020a)            | 25.66  | 10.45 | 42.26    | 16.11  | 8.49            |  |
| InsGen <sup>†</sup> (Yang et al., 2021)        | 19.58  |       |          |        |                 |  |
| GenCo <sup>†</sup> (Cui et al., 2021)          | 65.31  | 27.96 | 140.08   | 40.79  | $8.83 \pm 0.04$ |  |
| DA + GenCo <sup>†</sup> (Cui et al., 2021)     |        |       |          |        | $6.57 \pm 0.01$ |  |
| ADA + bCR <sup>‡</sup> (Zhao et al, 2020b)     | 22.61  | 10.58 | 38.82    | 16.80  |                 |  |
| $R_{\rm LC}$ <sup>†</sup> (Tseng et al., 2021) | 63.16  | 23.83 |          |        | $8.31 \pm 0.05$ |  |
| ADA + $R_{LC}^{\dagger}$ (Tseng et al., 2021)  | 21.7   |       |          |        | $2.47 \pm 0.01$ |  |
| APA <sup>†</sup> (Jiang et al), 2021)          | 45.19  | 13.25 |          |        |                 |  |
| StyleGAN2 (Karras et al., 2020b)               | 103.66 | 52.71 | 186.55   | 115.16 | $7.16 \pm 0.12$ |  |
| Reg-StyleGAN2 (ours)                           | 75.99  | 37.77 | 107.02   | 63.10  | $6.56 \pm 0.14$ |  |
| ADA (Karras et al, 2020a)                      | 22.26  | 12.64 | 41.81    | 16.76  | $3.07\pm0.08$   |  |
| Reg-ADA (ours)                                 | 20.05  | 11.95 | 36.17    | 15.91  | $2.95\pm0.05$   |  |
| ADA + APA (Jiang et al, 2021)                  | 19.71  | 8.84  | 24.09    | 11.79  | $2.64 \pm 0.08$ |  |
| Reg-ADA-APA (ours)                             | 17.88  | 8.02  | 21.88    | 11.27  | $2.58\pm0.04$   |  |

## Experiments

#### Ablation of Pre-trained Models and Pre-training Datasets

|                                                         | CLIP                                          |                     |                                               |                                             | FaceNet                                       |                  |
|---------------------------------------------------------|-----------------------------------------------|---------------------|-----------------------------------------------|---------------------------------------------|-----------------------------------------------|------------------|
| Method                                                  | FFHQ-5k                                       |                     | LSUN CAT-5k                                   |                                             | FFHQ-5k                                       |                  |
|                                                         | FID                                           | KID                 | FID                                           | KID                                         | FID                                           | KID              |
| StyleGAN2 (Karras et al), 2020b)<br>Reg-StyleGAN2(ours) | $52.71 \\ 40.98$                              | $39.52 \\ 27.56$    | $\begin{array}{c} 115.16\\ 42.04\end{array}$  | $100.57 \\ 26.21$                           | $52.71 \\ 38.80$                              | $39.52 \\ 23.38$ |
| ADA (Karras et al), 2020a)<br>Reg-ADA(ours)             | $\begin{array}{c} 12.64 \\ 11.09 \end{array}$ | $5.17 \\ 3.91$      | $\begin{array}{c} 16.76 \\ 14.15 \end{array}$ | $\begin{array}{c} 8.13 \\ 6.72 \end{array}$ | $\begin{array}{c} 12.64 \\ 11.37 \end{array}$ | $5.17 \\ 4.01$   |
| ADA+APA (Jiang et al), 2021)<br>Reg-ADA-APA(ours)       | 8.84<br>8.18                                  | 2.76<br><b>2.26</b> | 11.79<br>10.47                                | 4.86<br>4.68                                | 8.84<br>8.21                                  | 2.76<br>2.37     |

Table 2: Median FID  $\downarrow$  and the corresponding KID  $\times 10^3 \downarrow$  using a pre-trained CLIP or FaceNet.

## Experiments

### **Qualitative Result**



(a) 100-shot Obama (FID 39.53)

(b) FFHQ-5k (FID 11.69)

Figure 3: Samples from the Reg-ADA, truncated ( $\psi = 0.7$ ) as in prior work (Karras et al), 2020a).

# Thanks for your attention.