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Research Background

Introduction
• GANs produce poor samples with limited data.

• The problem is shared by other DGMs.

Related Work
• Data augmentations.

• Designing new losses.

• Transferring a pre-trained DGM.



Method
Motivation
Inspired by the bias-variance dilemma, we propose a complementary framework
Reg-DGM, which leverages a pre-trained model to reduce the variance of training a
DGM with limited data.

Our Method
Let x denote the real or fake sample, pd(x) denote the distribution of real data, pg(x)
denote the generator’s distribution,D(·||·) denote a proper statistical divergence,
andRf(x) : X → R denote the loss from the per-trained model f, we can define our
objective loss function:

min
pg(x)

D(pd(x)||pg(x)) + λEx∼pg(x)[Rf(x)], (1)

where λ ≥ 0 is a hyperparameter to control the relative weight of the two terms.



Method
A Prototypical Gaussian-fitting Example
The data distribution is a (univariate) Gaussian pd(x) = N (x|µ∗, σ2), where σ2 is
known and µ∗ is the parameter to be estimated. A training sample S = {xi}m

i=1 is
drawn i.i.d. according to pd(x). The hypothesis class for pg is
H = {N (x|µ, σ2) | µ ∈ R}. The regularization term in Eq. (1) is
Ef(x) := − logN (µ̂PRE, σ

2), i.e., pf(x) = N (x|µ̂PRE, σ2).

Proposition 2.2
Let β = λ

λ+1 be the normalized weight of the regularization term. In the

Gaussian-fitting example, ifmax
{

σ2−m(µ̂PRE−µ∗)2

σ2+m(µ̂PRE−µ∗)2 , 0
}
< β <

min
{

2σ2

σ2+m(µ̂PRE−µ∗)2 , 1
}
, then the following inequalities holds:

MSE[µ̂REG] < min{MSE[µ̂MLE],MSE[µ̂PRE]}. (2)



Convergence Analyses

Analyses in the Non-parametric Setting

Theorem 3.1
Under mild regularity conditions in Assumption A.1, for any λ > 0, there exists a
unique global minimum of the problem in Eq. (1) with the KL divergence.
Furthermore, the global minimum is in the form of p∗g (x) =

pd(x)
α∗+λEf(x)

, where α∗ ∈ R.

Theorem 3.2
Under mild regularity conditions in Assumption A.1, for any λ > 0, there exists a
unique global minimum of the problem in Eq. (1) with the JS divergence. Furthermore,
the global minimum is in the form of p∗g (x) =

pd(x)

eα
∗+λEf(x)−1

, where α∗ ∈ R.



Convergence Analyses

Analyses in the Parametric Settings

Theorem 3.3 (Convergence of Reg-DGM (informal))
Under standard and verifiable smoothness assumptions, with a high probability,
Reg-DGM with a sufficiently wide ReLU CNN converges to a global optimum of Eq. (1)
trained by GD and converges to a local minimum trained by SGD.



Implementation

Base Model
StyleGAN2, adaptive discriminator augmentation (ADA), and adaptive pseudo
augmentation (APA).

Pre-trained Model
ResNet, CLIP image encode, and FaceNet.

Energy Function
The energy function is defined by the expected mean squared error between the
features of a generated sample and a training sample as follows:

Ef(x) := Ex′∼pd

[
1

d
||f(x)− f(x′)||22

]
. (3)



Experiments

Benchmark Results with Limited Data



Experiments

Ablation of Pre-trained Models and Pre-training Datasets



Experiments

Qualitative Result
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