Packed-Ensembles for Efficient Uncertainty Estimation

<u>Olivier Laurent</u>, <u>Adrien Lafage</u>, Enzo Tartaglione, Geoffrey Daniel, Jean-Marc Martinez, Andrei Bursuc, and Gianni Franchi

O. Laurent & A. Lafage et al.

Context

Uncertainty Quantification

From HuggingFace Hub 😔

Sam Kieschnick

???

On overconfidence: Guo et al. 2017

Lindasj22

O. Laurent & A. Lafage et al.

Context

Deep Ensembles (Lakshminarayanan et al. 2017)

Figure 1 – Deep Ensembles

Cons:

- Number of operations
- Memory storage
- Inference time

Implicit Ensembles w/ subnetworks

- BatchEnsemble (Wen et al. 2019)
 - Subnetwork-specific parameters
- MIMO (Havasi et al. 2021)
 - Several subnetworks within one network.
- Masksembles (Durasov, et al. 2021)
 - Random masks to disable a subset of parameters at each forward pass.

Cons:

- Multiple forward passes
- Subnetworks not independent

Ensembles of small networks can be as good as medium networks (Lobacheva et al. 2021)

O. Laurent & A. Lafage et al.

Method

Packed-Ensembles: Seamlessly training ensembles!

Simple & efficient generalization of Deep Ensembles

Figure 2 – From a single network to Packed-Ensembles

How can we build a backbone containing independent subnetworks run in parallel?

Grouped convolutions (Krizhevsky et al. 2012)

The output channel c is produced by a specific group, identified by the integer $g = \left\lfloor \frac{\text{groups} \times c}{C_{out}} \right\rfloor$, which only uses $\frac{1}{\text{groups}}$ of the input channels:

$$\operatorname{out}(c,:,:) = \sum_{k=0}^{\frac{C_{in}}{\operatorname{groups}}-1} \operatorname{weight}_g(c,k,:,:) \star \operatorname{input}\left(k+g \times \frac{C_{in}}{\operatorname{groups}},:,:\right)$$

 C_{in} : number of input channels. C_{out} : number of output channels. groups: number of groups. Output features

Grouped Linear mask (groups=2)

5

Seamlessly training ensembles

O. Laurent & A. Lafage et al.

Modulating model capacity

Number of parameters of a convolution

Kernel size Output channels $\overbrace{C_{out}} \times \underbrace{C_{in}} \times \overbrace{k_{height}} \times \overbrace{k_{width}}$

Input channels

 $(\alpha \times (C_{out} \times C_{in} \times k_{height} \times k_{width} \times k_{width})$

Grander and the second second

Two specific cases:

 $lpha=\sqrt{M}$ ightarrow Single Network

 $\alpha = M \quad \Longrightarrow \quad \underset{\text{M subnetworks}}{\text{Deep Ensembles w/}}$

O. Laurent & A. Lafage et al.

Packed-Ensembles

M: number of subnetworks

 α : width factor

 γ : number of subgroups

Packed-Ensembles

O. Laurent & A. Lafage et al.

Experiments - CIFAR

		Classi	fication C	Calibration	00	DD Detectio	on	Complexity			
	Method	Acc \uparrow	$\mathbf{NLL}\downarrow$	$\mathbf{ECE}\downarrow$	$\mathbf{AUPR}\uparrow$	AUC ↑	FPR95↓	Params $(10^6)\downarrow$	$\mathbf{Mult}\textbf{-}\mathbf{Adds}\downarrow$		
-	Single Model	95.1	0.211	0.031	95.2	91.9	23.6	23.52	1.30		
	BatchEnsemble	93.9	0.255	0.033	94.7	91.3	20.1	23.63	5.19		
	MIMO $(\rho = 1)$	95.4	0.197	0.030	95.1	90.8	26.0	23.59	1.30		
	Masksembles	95.3	0.175	0.019	95.7	92.2	22.1	23.81	5.19		
	Packed-Ensembles	95.9	0.137	0.008	97.3	95.2	14.4	14.55	1.00		
_	Deep Ensembles	96.0	0.136	0.008	97.0	94.7	15.5	94.08	5.19		
-	Single Model	78.3	0.905	0.089	87.4	77.9	57.6	23.70	1.30		
	BatchEnsemble	66.6	1.788	0.182	85.2	74.6	60.6	23.81	5.19		
	MIMO $(\rho = 1)$	79.0	0.876	0.079	87.5	76.9	64.7	24.33	1.30		
	Masksembles	78.5	0.832	0.046	90.3	81.9	52.3	23.81	5.19		
	Packed-Ensembles	81.2	0.703	0.020	90.0	81.7	56.5	15.55	1.00		
	Deep Ensembles	80.9	0.713	0.026	89.2	80.8	52.5	94.82	5.19		

Table 1 - Performance of various ensembles methods on CIFAR - M=4, $\alpha = \gamma = 2$ – ResNet-50

CIFAR-10

CIFAR-100

Packed-Ensembles

Experiments - ImageNet

First Second

				Texture Dataset			I	ImageNet - R				
Method	Net	Acc	ECE	AUPR - T	AUC - T	FPR95 - T	AUPR - IO	AUC - IO	FPR95 - IO	rAcc	rNLL	rECE
Single Model	R50	77.8	0.121	18.0	80.9	68.6	3.6	50.8	90.8	23.5	5.187	0.082
BatchEnsemble	R50	75.9	0.035	20.2	81.6	66.5	4.0	55.2	82.3	21.0	6.148	0.165
MIMO ($\rho = 1$)	R50	77.6	0.147	18.4	81.6	66.8	3.7	52.2	90.6	23.4	5.115	0.059
Masksembles	R50	73.6	0.209	13.6	79.7	68.3	3.3	47.7	87.7	21.2	5.139	0.011
Packed-Ensembles $\alpha = 3$	R50	77.9	0.180	35.1	88.2	43.7	9.9	68.4	80.9	23.8	4.978	0.022
Deep Ensembles	R50	79.2	0.233	19.6	83.4	62.1	3.7	52.5	85.5	24.9	4.879	0.018
Single Model	R50×4	80.2	0.022	20.5	82.6	63.9	4.9	60.2	87.4	26.0	5.190	0.1721
BatchEnsemble	R50×4	77.7	0.024	23.8	82.8	63.8	4.4	58.4	80.5	23.4	6.079	0.203
MIMO ($\rho = 1$)	R50×4	80.3	0.015	19.3	82.5	66.1	4.9	60.7	86.4	25.8	5.278	0.189
Masksembles	R50×4	79.8	0.137	21.5	83.3	63.5	4.4	58.4	80.5	23.4	6.079	0.207
Packed-Ensembles $\alpha = 2$	R50×4	81.3	0.103	34.6	88.1	50.3	9.6	69.9	79.2	26.6	4.848	0.075
Deep Ensembles	R50×4	82.1	0.053	23.0	85.6	58.1	5.0	62.7	81.9	28.2	4.789	0.105

Table 2 - Performance of various ensembles methods on ImageNet - M=4, $\gamma=1$

ImageNet-O: Hendrycks et al. 2021a ImageNet-R : Hendrycks et al. 2021b Texture: Wang et al. 2022

O. Laurent & A. Lafage et al.

Diversity

Diversity in Ensembles is essential (Fort et al.). But where does it come from?

									-
	Sto	chasti	city		Re				
	ND	DI	DB	$ $ Acc (\uparrow)	ECE (\downarrow)	$\mathbf{AUPR}\ (\uparrow)$	$ID\mathbf{MI}$	OODMI	MI : Mutual Information
	-	-	-	77.63 ± 0.23	$0.0825{\pm}0.0018$	$89.19{\pm}0.65$	$0{\pm}0$	$0{\pm}0$	
	\checkmark	-	-	$80.94{\pm}0.10$	$0.0179 {\pm} 0.0010$	$90.23{\pm}0.62$	0.1513	0.4022	
	-	\checkmark	-	81.01 ± 0.06	$0.0202{\pm}0.0011$	$91.10{\pm}0.39$	0.1524	0.4088	
Stochasticity in:	-	-	\checkmark	80.87 ± 0.10	$0.0178 {\pm} 0.0010$	$90.80{\pm}0.30$	0.1505	0.4115	
Packed-Ensembles	\checkmark	\checkmark	-	81.16±0.10	$0.0210 {\pm} 0.0008$	$91.69{\pm}0.56$	0.1584	0.4135	
Deep Ensembles	\checkmark	\checkmark	\checkmark	81.08 ± 0.08	$0.0198 {\pm} 0.0013$	$90.68{\scriptstyle\pm0.25}$	0.1534	0.4031	

Table 3 - Performance with respect to stochasticity sources CIFAR-100

- ND: Non-Deterministic backward propagation
- **DI: D**ifferent Initialization
- DB: Different Batch composition & order

Obvious sources of diversity seem equivalent

O. Laurent & A. Lafage et al.

Discussions

Sensitivity Analysis on α – capacity modulator

Discussions

Sensitivity Analysis on γ – sparsity modulator

Figure 5 - Sensitivity Analysis on γ – ResNet-50, CIFAR-100

 $\alpha = 3, M = 8$

13

Conclusion & Takeaways

Main takeaway:

Packed-Ensembles: **controlled trade-off** between accuracy & uncertainty vs. model complexity

We propose TorchUncertainty, a new PyTorch library which includes code for PE

Other takeaways:

Ensembles of small independent neural networks can be as effective as ensembles of large DNNs

References & QR Codes

[1] Balaji Lakshminarayanan, et al.. Simple and scalable predictive uncertainty estimation using deep ensembles. In NeurIPS, 2017.

[2] Wen, et al. BatchEnsemble: an alternative approach to efficient ensemble and lifelong learning. In ICLR, 2019.

[3] Martin Havasi et al. Training independent subnetworks for robust prediction. In ICLR, 2021.

[4] Durasov, et al. Masksembles for uncertainty estimation. In CVPR, 2021.

[5] Alex Krizhevsky et al. Imagenet classification with deep convolutional neural networks. In NeurIPS, 2012.

[6] Wang et al. ViM: Out-of-distribution with virtual-logit matching. In CVPR, 2022.

[7] Hendrycks et al. Natural adversarial examples. In CVPR, 2021a.

[8] Hendrycks et al. The many faces of robustness: A critical analysis of out-ofdistribution generalization. In CVPR, 2021b.

