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Text1: The Torre del Reloj Spanish is the
main city gate of the historic center of
Cartagena de Indias.
Text2: The Torre del Reloj is the clock tower, 
known as Arquillo Clock, and is one of the
most emblematic buildings of Chiclana.
Text3: Other landmarks in the city include
the Torre del Reloj (Clock Tower).

Query: What water-related object is sitting 
in front of the Torre del Reloj?
Retrieval Candidates:

Image1              Image2             Image3

Retrieval Candidates: 
Text1: A woman wearing a net on head 
cutting a cake.
Text2: A baker woman preparing bread 
dough on a tray with wax paper.

Query: A woman wearing a net on her 
head cutting a cake.
Retrieval Candidates: 

Query: 
Image Retrieval

Text Retrieval

• Multi-modal retrieval focuses more on relevance modeling between queries and documents, single/cross 

modality matching, and modality routing.

Multi-Modal Retrieval
（Relevance Modeling）

Cross-Modality Retrieval
（Text/Image Matching）
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• Divide-and-Conquer: Retrieving documents from multi-modalities and then fusion the retrieval results

• Universal Vision-Language Dense Retrieval: Leaning one universal embedding space for multi-modal 

retrieval, which unifies the relevance modeling and fusion stages
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Query

Construction of the Xanadu house in 
Kissimmee, Florida, began with the pouring 
of a concrete …

In 1946, he was honored on the first coin 
to feature an African American, the Booker 
T. Washington Memorial Half Dollar …

The National Air and Space Museum of the 
Smithsonian Institution, also called the Air 
and Space Museum …

…

KNN Search
Ranking List

Query

Universal Vision-Language Dense RetrievalDivide-and-Conquer Retrieval
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• We use one Text Encoder to encode queries, text documents and image captions

• The Image Encoder is employed to encode image features as low-dimensional embeddings
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Universal Vision-Language Dense Retrieval (UniVL-DR)
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• We enhance the representations of image documents by summing the representations of image captions 

and image features

• The image features are verbalized to enhance image documents in the raw text space
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Universal Vision-Language Dense Retrieval (UniVL-DR)
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• The queries, text documents and image documents are mapped in one universal embedding space

• UniVL-DR designs a modality-balanced hard negative training strategies to train retrieval models
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• We first conduct multi-modal retrieval using text retrieval models (Multi-modal->Single modal)

• Encoding image captions as the representations of image documents
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• Multi-modal retrieval can be implemented by divide-and-conquer models (Multi-modal->Single/Cross 

modality retrieval & Fusion)
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• Learn one universal embedding space for queries, text documents and image documents (Multi-modal ->

Universal Dense Retrieval)
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• Learn one universal embedding space for queries, text documents and image documents (Multi-modal ->

Universal Dense Retrieval)
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Ablation Studies on Image Retrieval
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• We conduct experiments on the image retrieval task to show how to represent image documents

The image captions play a critical role in modeling relevance 
modeling between queries and image documents
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• We conduct experiments on the image retrieval task to show how to represent image documents

The figure features can help better understand the semantics 
of image documents
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Ablation Studies on Image Retrieval
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• Then we further show the image retrieval performance of multi-modal retrieval models 

The text document retrieval tasks can also benefit the image 
retrieval task
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Multi-modal Retrieval Models
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Balancing the modality of negatives can improve the retrieval 
performance of inbatch and hard negative trained models 
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Inbatch Training Text Hard Negs
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Balancing the modality of hard negatives can alleviate the 
modality preference



Effectiveness of Image Verbalization
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These verbalized queries usually contain matched entities and 
bridge the modality gap between images and texts 
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Image Captions are 
crucial to 
understanding the 
image semantics

Our Modality-Balanced 
Hard Negative training 
method is effective to 
alleviate the modality 
preference

Image Verbalization can 
bridge the modality gap 
between images and texts 
in the raw text space

All codes and data are available at https://github.com/OpenMatch/UniVL-DR.
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