

The 11th International Conference on Learning Representation

GReTo: Remedying dynamic graph topologytask discordance via target homophily

Authors: Zhengyang Zhou¹, Qihe Huang¹, Gengyu Lin¹, Kuo Yang¹, Lei Bai, Yang Wang^{1*}

¹University of Science and Technology of China, USTC, ²Shanghai AI Laboratory

Presenter: Zhengyang Zhou

Motivation

Irrelevant nodes will

introduce noise

Topology-task discordance

Topology-task discordance. Neighbor B cannot facilitate aggregation from A^t to A^{t+1} but introduces noise.

> **Dynamic graph regression**: Target info can benefit

effective node selection

> Homophily in graphs: Consistency between ego-node

and its neighboring nodes
Neighborhood informativeness

Motivate target-oriented And personalized propagation

Preliminary

Dynamic graph homophily

> Solution: Graph learning to Remedy Topology-task discordance (GReTo)

Signed target-oriented message passing

(1) Target-homophily node selection

(2) Inter-graph homophily predictor						
$x_{i}^{t} \blacklozenge Context-LSTM \blacklozenge \qquad $						
$\widehat{Sig}_{R}^{T+1} = \text{Conv1D}(\text{LSTM}(\boldsymbol{c}^{1}, \boldsymbol{c}^{2},, \boldsymbol{c}^{T}); \text{LSTM}(Sig^{1}, Sig^{2},, Sig^{T}))$						
$[p, q_p, q_n] = \operatorname{MLr}(\operatorname{Sig}_R, w_s)$						
(3) Neighborhood disentangled aggregation						
$(\boldsymbol{f}_L)_i = ([\widehat{\boldsymbol{M}}]_P)_i \odot \widetilde{\boldsymbol{A}}_i, \ (\boldsymbol{f}_H)_i = ([\widehat{\boldsymbol{M}}]_N)_i \odot \widetilde{\boldsymbol{A}}_i$						
$\operatorname{AGGR}(v_i) = \alpha \sum_{j \in \mathcal{N}_L(v_i)} (\boldsymbol{f}_L)_{ij} x_j w_p + (1 - \alpha) \sum_{k \in \mathcal{N}_H(v_i)} (\boldsymbol{f}_H)_{ik} x_k w_n$						

Personalized high-order layer propagation

Temporal convolution learning

Sandwich spatiotemporal prediction structure

$$\widetilde{X} = \Gamma *_{\kappa} X = X \odot \sigma(X); \quad H^{(K)} = f_{g}^{*}(\widetilde{X})$$

$$\widehat{Y} = \Gamma *_{\kappa} H^{(K)} = H^{(K)} \odot \sigma(H^{(K)})$$
Inter-graph homophily Regression predictor loss
$$Loss(\Theta) = -\frac{1}{N} \sum_{i=1}^{N} \{ \sum_{\substack{p * \in \{p, \\ q_{p}, q_{n}\}}} (p_{i}^{*} \log p_{i}^{*} - (1 - p_{i}^{*}) \log(1 - p_{i}^{*})) \} + (\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_{i} - y_{i}) \}$$

Overall loss

Experiments

Dataset statistics

	Dataset	Node #	Time step #	Time span	Interval length	Intra-graph homophily
- (0)	Metr-LA	207	34,272	03/01/2012- 06/30/2012	5min	0.2273
Iraffic	PeMS-Bay	325	52,116	01/01/2017- 05/31/2017	5min	0.1073
Air/	KnowAir	184	11,688	01/01/2015- 12/31/2018	3h	0.2481
Climate	Temperature	184	11,688	01/01/2015- 12/31/2018	3h	0.1156

Performance comparison

	Metr-LA		PeMS-Bay		KnowAir		Temperature	
	MAPE	RMSE	MAPE	RMSE	MAPE	RMSE	MAPE	RMSE
GCN	0.0975	8.3098	0.0522	4.4952	0.3146	16.5635	0.3221	1.4439
GAT	0.0628	5.8018	0.0176	1.6610	0.2435	13.3114	0.3393	1.4855
GraphSAGE	0.0606	5.7550	0.0167	1.6173	0.2449	13.1932	0.1966	1.0233
SuperGAT	0.0623	5.7886	0.0175	1.6606	0.2535	13.3671	0.3224	1.3439
EGConv	0.0609	5.7554	0.0167	1.6139	0.2399	13.2189	0.1875	1.0097
H_2GCN	0.0608	5.7292	0.0168	1.6599	0.2371	13.1207	0.1906	0.9971
STGCN	0.0554	3.8655	0.0197	1.5890	0.2437	12.3601	0.1704	1.1190
GWN	0.0528	3.8434	0.0163	1.5482	0.2288	12.8495	0.1607	0.9132
MTGNN	0.0526	3.8153	0.0170	1.5759	0.2271	12.9091	0.1682	0.9034
DCRNN	0.0532	3.8798	0.0161	1.5292	0.2392	13.0389	0.1351	0.9715
ASTGNN	0.0530	5.5313	0.0169	1.6229	0.2485	13.2274	0.2978	0.9330
GReTo (Ours)	0.0500	3.6552	0.0166	1.4813	0.1708	11.0369	0.1341	0.8704

> Case study

(a) Hierarchical node distribution

(b) Layer-wise importance over 3-order propagation

Contribution & Conclusion

Conclusion

- ✓ Formalize dynamic graph homophily theory;
- ✓ Define target homophily via inter-graph temporal evolution
- ✓ Propose signed message passing and layer-wise

importance measurement to realize high-order propagation

over dynamic graphs

Zhou Z, et, al. Remedying Dynamic Graph Topology-task Discordance via Target Homophily, ICLR 2023.

