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Sequential Decision Making in Medical Diagnostics
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Sequential Decision Making in Medical Diagnostics
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Figure: Sequential decision making model for medical diagnostics process
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Cost-F; Pareto Front

Definition (Cost-F; Pareto Front of Multi-Objective Policy

Optimization)
The Pareto front 1* for cost-sensitive dynamic diagnosis is the set
of policies such that

M* = Upso argmax{Fi(7) subject to Cost(r) < B}

Here we consider the F; score metric:

N TP(r) B 2TP(r)
{0 = To(m) + 1(FP(m) + FN() 14 TP() — TN(R)
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Finding Cost-F; Pareto Front via Reward Shaping

The Cost-F1 Pareto front is a subset of the collection of all
reward-shaped solutions, given by

M* C M= Uxso,p<0 argmax{TN(m)+ X- TP(x) + p- Cost(m)}.

Note the unconstrained policy optimization problem:
max TN(w)+ X\- TP(x) + p - Cost(r).
s

is a standard cumulative-sum MDP problem, with reshaped reward:

p-c(a), if a € [D] (choosing task panels)
R(s,a) = A-1{y = P}, if a =P (true positive diagnosis) .
1{y = N}, if a= N (true negative diagnosis)
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Semi-Model-Based Deep Diagnosis Policy Optimization
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Figure: Dynamic diagnostic policy learning via semi-model-based proximal
policy optimization. The full policy m comprises of three modules:
posterior state encoder, classifier, and panel/prediction selector.
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Empirical Results on Three Clinical Tasks
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Empirical Results on Three Clinical Tasks

Table: Comparison with full observation, fixed selection, random selection
and dynamic selection baselines under no budget constraints. Our
approach achieves up to 85% reduction in testing costs.

Models Ferritin AKI Sepsis Test Selection
Metrics Fi AUC  Cost Fi AUC  Cost Fi AUC  Cost Strategy
LR 0.539 0.935 $290 0.452  0.797 $591 0.506 0.825 $591 Full
RF 0.605 0.938 $290 0.439 0.764 $591 0.456 0.801 $591 Full
XGBoost 0.617 0.938 $290 0.404 0.785 $591 0.431 0.828 $591 Full
LightGBM 0.627 0.941 $290 0.474 0790 $591 0.500 0.844 $591 Full
3-layer DNN 0.616 0.938 $290 0.494 0.802 $591 0.517 0.845 $591 Full
LR (2 panels) 0.401 0.859  $92 0.473 0797  $92 0.488 0.811 $92 Fixed
RF (2 panels) 0.504 0.887 $92 0.425 0.768 $92 0.478 0.828 $92 Fixed
XGBoost (2 panels)  0.519 0.895  $92 0.410 0.781 $92 0.459 0.877 $92 Fixed
LightGBM (2 panels) 0.571 0.901  $92 0.491 0792 $92 0.502 0.864 $92 Fixed
FS 0.585 0.927 $74 0.434 0.787 $98 0.500 0.837  $90 Fixed
RS 0.437 0.845 $145 0.424 0.748 $295 0.473 0.789 $295 Random
CWCF 0.554 0.718 $256 0.283 0.510 $326 0.112 0.503 $301 Dynamic

SM-DDPOyretrained 0.607 0.925  $80 0.519 0.789 $90 0.567 0.836 $85 Dynamic
SM-DDPOcnd2end 0.624 0.928 $62 0.495 0.795 $97 0.562 0.845  $90 Dynamic
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Ferritin Dataset

AKI Dataset

Empirical Results on Three Clinical Tasks

Sepsis Dataset
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Figure: Cost-F; Pareto Front for maximizing Fi-score on Ferritin, AKI
and Sepsis Datasets



© Extension to time-series diagnostic tasks
@ Consideration of temporal costs and constraints

© Inclusion of various types of diagnostic data via multimodal
learning
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