Pareto-Optimal Diagnostic Policy Learning in Clinical Applications via Semi-Model-Based Deep Reinforcement Learning

Zheng Yu¹ Yikuan Li² Joseph Kim¹ Kaixuan Huang¹ Yuan Luo² Mengdi Wang¹

¹Princeton University

²Northwestern University

Apr, 2023

Sequential Decision Making in Medical Diagnostics

Sequential Decision Making in Medical Diagnostics

Trade-off between diagnose accuracy and testing costs

Sequential Decision Making in Medical Diagnostics

Figure: Sequential decision making model for medical diagnostics process

Definition (Cost-*F*₁ Pareto Front of Multi-Objective Policy Optimization)

The Pareto front Π^\ast for cost-sensitive dynamic diagnosis is the set of policies such that

$$\Pi^* = \bigcup_{B>0} \operatorname{argmax}_{\pi} \{F_1(\pi) \text{ subject to } \operatorname{Cost}(\pi) \leq B\}$$

Here we consider the F_1 score metric:

$$F_{1}(\pi) = \frac{\mathsf{TP}(\pi)}{\mathsf{TP}(\pi) + \frac{1}{2}(\mathsf{FP}(\pi) + \mathsf{FN}(\pi))} = \frac{2\mathsf{TP}(\pi)}{1 + \mathsf{TP}(\pi) - \mathsf{TN}(\pi)}$$

Finding Cost-*F*₁ Pareto Front via Reward Shaping

Theorem

The Cost- F_1 Pareto front is a subset of the collection of all reward-shaped solutions, given by

$$\Pi^* \subseteq \overline{\Pi} := \bigcup_{\lambda \ge 0, \rho \le 0} \operatorname{argmax}_{\pi} \left\{ \mathsf{TN}(\pi) + \lambda \cdot \mathsf{TP}(\pi) + \rho \cdot \mathsf{Cost}(\pi) \right\}.$$

Note the unconstrained policy optimization problem:

$$\max_{\pi} \mathsf{TN}(\pi) + \lambda \cdot \mathsf{TP}(\pi) + \rho \cdot \mathsf{Cost}(\pi).$$

is a standard cumulative-sum MDP problem, with reshaped reward:

$$R(s,a) = \begin{cases} \rho \cdot c(a), & \text{if } a \in [D] \text{ (choosing task panels)} \\ \lambda \cdot \mathbf{1}\{y = \mathsf{P}\}, & \text{if } a = \mathsf{P} \text{ (true positive diagnosis)} \\ \mathbf{1}\{y = \mathsf{N}\}, & \text{if } a = \mathsf{N} \text{ (true negative diagnosis)} \end{cases}$$

イロト 不得 トイヨト イヨト

Figure: Dynamic diagnostic policy learning via semi-model-based proximal policy optimization. The full policy π comprises of three modules: posterior state encoder, classifier, and panel/prediction selector.

Empirical Results on Three Clinical Tasks

Acute Kidney Injury

(a) Ferritin abnormality detection

(b) Acute kidney injury prediction

(c) Sepsis mortality prediction

Table: Comparison with full observation, fixed selection, random selection and dynamic selection baselines under no budget constraints. Our approach achieves up to 85% reduction in testing costs.

Models	odels Ferritin			AKI				Sepsis			Test Selection
Metrics	F_1	AUC	Cost	F_1	AUC	Cost		F_1	AUC	Cost	Strategy
LR	0.539	0.935	\$290	0.452	0.797	\$591		0.506	0.825	\$591	Full
RF	0.605	0.938	\$290	0.439	0.764	\$591		0.456	0.801	\$591	Full
XGBoost	0.617	0.938	\$290	0.404	0.785	\$591		0.431	0.828	\$591	Full
LightGBM	0.627	0.941	\$290	0.474	0.790	\$591		0.500	0.844	\$591	Full
3-layer DNN	0.616	0.938	\$290	0.494	0.802	\$591		0.517	0.845	\$591	Full
LR (2 panels)	0.401	0.859	\$92	0.473	0.797	\$92		0.488	0.811	\$92	Fixed
RF (2 panels)	0.504	0.887	\$92	0.425	0.768	\$92		0.478	0.828	\$92	Fixed
XGBoost (2 panels)	0.519	0.895	\$92	0.410	0.781	\$92		0.459	0.877	\$92	Fixed
LightGBM (2 panels)	0.571	0.901	\$92	0.491	0.792	\$92		0.502	0.864	\$92	Fixed
FS	0.585	0.927	\$74	0.434	0.787	\$98		0.500	0.837	\$90	Fixed
RS	0.437	0.845	\$145	0.424	0.748	\$295		0.473	0.789	\$295	Random
CWCF	0.554	0.718	\$256	0.283	0.510	\$326		0.112	0.503	\$301	Dynamic
SM-DDPOpretrained	0.607	0.925	\$80	0.519	0.789	\$90		0.567	0.836	\$85	Dynamic
SM-DDPO _{end2end}	<u>0.624</u>	<u>0.928</u>	<u>\$62</u>	0.495	0.795	\$97		0.562	0.845	\$90	Dynamic

Empirical Results on Three Clinical Tasks

Figure: Cost- F_1 Pareto Front for maximizing F_1 -score on Ferritin, AKI and Sepsis Datasets

- Extension to time-series diagnostic tasks
- ② Consideration of temporal costs and constraints
- Inclusion of various types of diagnostic data via multimodal learning