

EVC: Towards Real-Time Neural Image Compression with Mask Decay

Guo-Hua Wang¹, Jiahao Li², Bin Li², Yan Lu²

¹State Key Laboratory for Novel Software Technology, Nanjing University

²Microsoft Research Asia

Introduction

• Task: image compression

- Traditional image compression
 - JPEG, BPG, VTM
 - hand-crafted features
- Learning based image compression
 - End-to-end optimization
 - Outperform traditional methods for the rate-distortion (RD) performance
 - But it suffers from a large complexity

Our contributions

- We propose an <u>Efficient Variable-bit-rate</u> <u>Codec</u> (EVC) for image compression
 - Our Large model: 30 FPS for the 768x512 inputs
 - Our Small model: 30 FPS for the 1920x1080 inputs
 - On-par with SOTA models for the RD performance
- We propose mask decay with a novel sparsity criterion
 - Our medium and small models are improved significantly by 50% and 30%, respectively.
- We advocate the scalable encoder for neural image compression
 - With residual representation learning and mask decay, our scalable encoder achieves a superior complexity-RD trade-off

Our EVC framework

- We introduce adjustable quantization steps for variable RD trade-offs.
- Both encoder and decoder suffer from large complexities

Encoder and Decoder

Hyperprior

Figure 11: The structure of our dual spatial prior.

Mask decay

- The gradient of L2 norm vanishes when x approaches zero
- The gradient of L1 norm is a constant without considering its own magnitude

• Ours:
$$\frac{\partial \mathcal{L}_{sparse}(x)}{\partial x} = |x-1|, \quad \mathcal{L}_{sparse}(x) = \begin{cases} -\frac{1}{2}x^2 + x, & \text{if } 0 \le x \le 1, \\ \frac{1}{2}x^2 - x + 1, & \text{if } x > 1. \end{cases}$$

The scalable encoder

- Residual representation learning (RRL) encourages the encoder's diversity
- Both RRL and mask decay treat the teacher as a reference, which makes the training more effective

Experiments

• Mask deacy and our scalable encoder

Latency

• Comparison with state-of-the-art

Resolution	GPU	Туре	Entroformer	STF Transformer	CNN	Large	EVC Medium	Small
768×512	2080Ti	encoding decoding	OM OM	176.3 202.3	158.5 210.2	63.0 41.1	44.7 32.4	28.4 24.4
	A100	encoding decoding	816.8 4361.9	115.9 143.2	96.4 118.0	21.1 19.1	19.8 17.1	17.7 15.6
1920×1080	2080Ti	encoding decoding	OM OM	576.0 531.7	456.0 652.0	305.3 179.2	181.5 118.1	90.9 73.2
	A100	encoding decoding	7757.4 OM	355.6 354.8	278.1 281.7	84.2 60.2	56.3 46.5	31.4 29.7

RD Curves

• Comparison with state-of-the-art

Visualization

Figure 20: Visualization of our models' reconstruction. EVC-SS denotes our model equipped with the small encoder and the small decoder, while M and L means medium and large, respectively. Numbers in the tuple are BPP, PSNR, the encoding time (ms), and the decoding time (ms), respectively. Note that the latency is measured on a computer with 2080Ti GPU. Our models are dramatically faster than VTM.

Conclusions

- A new milestone
 - Real-Time
 - On-par with SOTA for RD performance
 - A uniform model handles variable RD trade-offs
- We proposed mask decay with a novel sparse criterion
 - Our medium and small models are improved significantly by 50% and 30%, respectively.
 - The encoder is more redundant than the decoder.
- We advocate the scalable encoder for neural image compression
 - With residual representation learning and mask decay, our scalable encoder achieves a superior complexity-RD trade-off

Thank you!

<u>https://openreview.net/pdf?id=XUxad2Gj40n</u>

https://github.com/microsoft/DCVC/tree/main/EVC