

ResAct: Reinforcing Long-term Engagement in Sequential Recommendation with Residual Actor

Wanqi Xue*, Qingpeng Cai, Ruohan Zhan, Dong Zheng, Peng Jiang, Kun Gai, Bo An

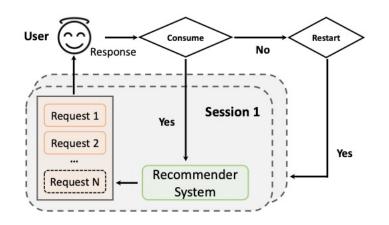
School of Computer Science and Engineering, NTU, Singapore

Kuaishou Technology

* This work was done during an internship at Kuaishou

Long-term engagement in Sequential Recommendation

Sequential recommendation
 Session-Request structure
 Keep feeding items to users
 Users decide when to start and quit a session



Long-term user engagement

Increasing users' visiting frequency: low return time between sessions
 Increasing the length of sessions: more items can be consumed in each session

Reinforcement learning: a promising direction

□Focusing on maximizing cumulative reward from a long-term perspective

Sequential Recommendation as an MDP

Describe sequential recommendation as a Markov Decision Process

- $\Box Defined by a tuple \langle S, A, P, R, \gamma \rangle$
- $\Box \ \mathcal{S} = \bar{\mathcal{S}}_h \times \mathcal{S}_l \text{ is the state space}$

✤Bi-level structure in sequential recommendation

Decompose the state space to session-level (high-level) and request-level (low-level) features

□Rewards relevant to long-term user engagement

Time duration between two sessions $r(\delta^{u}) = \left(\lfloor \frac{\min(\delta^{u}_{avg}, \delta_{75\%})}{\delta^{u}} \rfloor\right).clip(0,5)$ $r(\eta^{u}) = \left(\lfloor \frac{\eta^{u}}{\eta^{u}_{avg} \times 0.8} \rfloor\right).clip(0,5)$

Optimization objective

KUAISHOU

$$\max_{\pi} \mathcal{J}(\pi) = \mathbb{E}_{s_t \sim d_t^{\pi}(\cdot), a_t \sim \pi(\cdot|s_t)} \left[Q^{\pi}(s_t, a_t) \right]$$

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{(s_{t'}, a_{t'}) \sim \pi} \left[r(s_t, a_t) + \sum_{t'=t+1}^{\infty} \gamma^{(t'-t)} \cdot r(s_{t'}, a_{t'}) \right]$$

😤 KUAISHOU

- Relating changes in long-term engagement to a single recommendation
- ➢For reinforcement learning methods
 - □Policy optimization in huge policy space
 - The evaluation of state-action values (Q values)
 - Probing previously unexplored areas will hurt users experiences
 - Sparse rewards
 - State representations will not contain much information about long-term engagement

Workflow of ResAct

➢ Motivation

- □ Learn a recommendation policy which is **broadly consistent to, but better than**, the online-serving policy
 - Sufficient data near the learning policy so that the state-action values can be well estimated

✤Safe recommendation

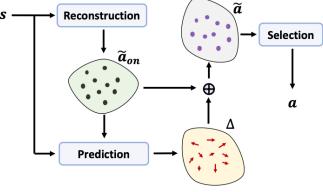
□Relate state representations to long-term reward signals

Direct learning such policy is difficult: adding an action residual

➤Workflow

Reconstruction $\{\tilde{a}_{on}^i \sim \tilde{\pi}_{on}(a|s)\}_{i=1}^n$ Prediction $\tilde{a}^i = \tilde{a}_{on}^i + \Delta(s, \tilde{a}_{on}^i)$ Selection $\arg \max_{\tilde{s}} Q^{\hat{\pi}}(s, \tilde{a})$ for $\tilde{a} \in \tilde{a}^i$

 $rg \max_{\tilde{a}} Q^{\hat{\pi}}(s, \tilde{a}) \text{ for } \tilde{a} \in \{\tilde{a}^i\}_{i=0}^n$



Reconstructing Online Behaviors

 $\tilde{\pi}_{on}(a|s) \approx \pi_{on}(a|s)$

- A naïve approach $\mathbb{E}_{s,a_{on} \sim \pi_{on}(a|s)} \left[(D(a|s;\theta_d) a_{on})^2 \right]$. It can only generate one candidate
- ► Inspired by VAE

KUAISHOU

Encoder and Decoder

 $E(\cdot|s, a_{on}; \theta_e) \qquad D(a|s, c; \theta_d)$ $L_{\theta_e, \theta_d}^{Rec} = \mathbb{E}_{s, a_{on}, c} \left[(D(a|s, c; \theta_d) - a_{on})^2 + KL(\mathcal{C}(s, a_{on}; \theta_e) || \mathcal{N}(0, 1)) \right]$

□It can generate multiple action candidates

 $ilde{a}^i_{on} = D(a|s,c^i; heta_d) \qquad \{c^i \sim \mathcal{N}(0,1)\}_{i=0}^n$

Learning to Predict the Action Residual

Improving upon the reconstructed candidates with a residual model

$$f(\Delta|s,a; heta_f) \qquad heta_f = \{ heta_h, heta_l, heta_a\}$$

$$z_h = f_h(s_h; \theta_h), z_l = f_l(s_l; \theta_l); z = Concat(z_h, z_l); \Delta = f_a(z, a; \theta_a).$$

Generate an improved action with a deterministic policy $\hat{\pi}(a|s,c) = D(\tilde{a}_{on}|s,c;\theta_d) + f(\Delta|s,\tilde{a}_{on};\theta_f)$

Optimization through policy gradient

KUAISHOU

$$\nabla_{\theta_f} \mathcal{J}(\hat{\pi}) = \mathbb{E}_{s,c} \left[\nabla_a Q^{\hat{\pi}}(s,a) |_{a=\hat{\pi}(a|s,c)} \nabla_{\theta_f} f(\Delta|s,a;\theta_f) |_{a=D(a|s,c;\theta_d)} \right]$$
$$\nabla_{\theta_d} \mathcal{J}(\hat{\pi}) = \mathbb{E}_{s,c} \left[\nabla_a Q^{\hat{\pi}}(s,a) |_{a=\hat{\pi}(a|s,c)} \nabla_{\theta_d} D(a|s,c;\theta_d) \right].$$

$$L_{\theta_{q_{j}}}^{TD} = \mathbb{E}_{(s_{t}, a_{t}, r_{t}, s_{t+1})} \left[(Q_{j}(s_{t}, a_{t}; \theta_{q_{j}}) - y)^{2} \right], j = \{1, 2\};$$

$$y = r_{t} + \gamma \min \left[Q_{1}^{'}(s_{t+1}, \hat{\pi}^{'}(a_{t+1}|s_{t+1}); \theta_{q_{1}}^{'}), Q_{2}^{'}(s_{t+1}, \hat{\pi}^{'}(a_{t+1}|s_{t+1}); \theta_{q_{2}}^{'}) \right].$$

Learning to Predict the Action Residual

► Updating the recommendation policy $\hat{\pi}(a|s,c) = D(\tilde{a}_{on}|s,c;\theta_d) + f(\Delta|s,\tilde{a}_{on};\theta_f)$

$$\theta_f \leftarrow \theta_f + \nabla_{\theta_f} \mathcal{J}(\hat{\pi}), \theta_f = \{\theta_h, \theta_l, \theta_a\}.$$

$$\theta_d \leftarrow \theta_d + \nabla_{\theta_d} \mathcal{J}(\hat{\pi}) - \nabla_{\theta_d} L^{Rec}_{\theta_e, \theta_d}$$

Action selection

KUAISHOU

Reuse the learned state-action function (the critic)

$$\hat{\pi}(a|s) = \hat{\pi}(a|s, c^*);$$

$$c^* = \arg\max_c Q_1(s, \hat{\pi}(a|s, c); \theta_{q_1}), c \in \{c^i \sim \mathcal{N}(0, 1)\}_{i=0}^n$$

Relating state features to long-term rewards Expressiveness: maximize the mutual information between state features and rewards

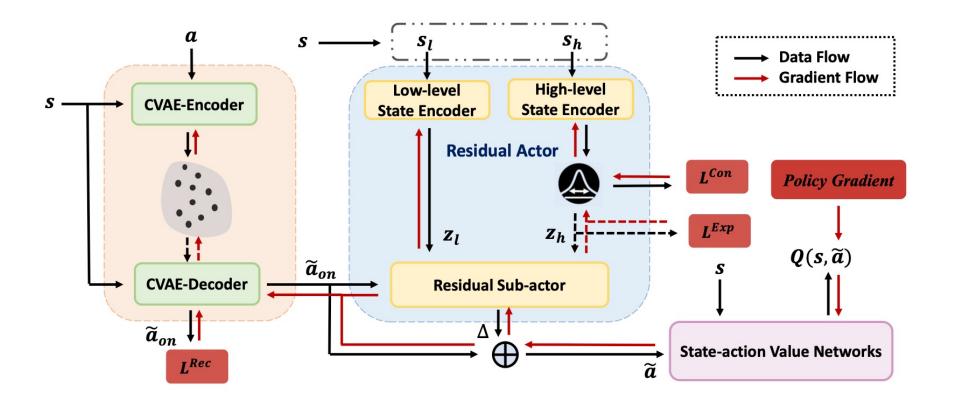
 $I_{\theta_h}(z_h; r) = \iint p_{\theta_h}(z_h) p(r|z_h) \log \frac{p(r|z_h)}{p(r)} dz_h$ $L_{\theta_h, \theta_o}^{Exp} = \mathbb{E}_{s, z_h \sim p_{\theta_h}(z_h|s_h)} \left[\mathcal{H}(p(r|s)||o(r|z_h; \theta_o)) \right]$

Conciseness: minimizing mutual information between state features and row states to reduce redundant information

$$\begin{split} L_{\theta_h}^{Con} &= \int p(s_h) \left[\int p_{\theta_h}(z_h | s_h) \log \frac{p_{\theta_h}(z_h | s_h)}{m(z_h)} \mathrm{d} z_h \right] \mathrm{d} s_h \\ &= \mathbb{E}_s \left[KL(p_{\theta_h}(z_h | s_h) | | m(z_h)) \right]. \end{split}$$

Overview of ResAct

Inference: data flowTraining: gradient flow



Experimental Setup

►Dataset

□MovieLensL-1m

RecL-25m

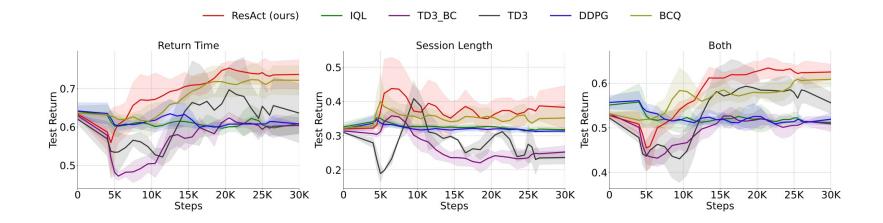
	Table 1: Statistics of <i>RecL-25m</i> .				
	Users	Sessions	Requests		
	99,899	6,126,583	25,921,753		
	Avg return time (h)	Avg session length	Avg # of sessions		
Mean	-	4.0449	61.3277		
75%	11.2794	4.8792	85		
25%	4.3264	2.1358	30		

Evaluation metric: Normalized Capped Importance Sampling

$$\tilde{J}^{NCIS}(\pi) = \frac{1}{|\mathcal{T}|} \sum_{\xi \in \mathcal{T}} \left[\frac{\sum_{(s,a,r) \in \xi} \tilde{\rho}_{\pi,\pi_{\beta}}(s,a)r}{\sum_{(s,a,r) \in \xi} \tilde{\rho}_{\pi,\pi_{\beta}}(s,a)} \right]$$

Overall Performance

Learning curves



Performance comparison

Table 2: Performance comparison					
on MovieLensL-1m. The " \pm " in-					
dicates 95% confidence intervals.					

	Return
DDPG	1.7429 ±0.0545
TD3	1.7363 ± 0.0546
TD3_BC	1.7135 ± 0.0541
BCQ	1.7898 ± 0.0320
IQL	1.7360 ± 0.0546
IL	1.7485 ±0.0310
IL_CVAE	1.7344 ±0.0316
ResAct (Ours)	1.8123 ±0.0319

Table 3: Performance comparison on RecL-25m in various tasks. The "+" indicates 95% confidence intervals.

tasks. The \perp	mulcales 9570 confidence intervals.			
	Return Time	Session Length	Both	
DDPG	0.6375 ±0.0059	0.3290 ± 0.0056	0.5908 ±0.0092	
TD3	0.6756 ± 0.0133	0.4015 ± 0.0073	0.5498 ± 0.0103	
TD3_BC	0.6436 ± 0.0059	0.3671 ± 0.0037	0.5563 ± 0.0050	
BCQ	0.6837 ± 0.0061	0.3836 ± 0.0033	0.5915 ± 0.0049	
IQL	0.6296 ± 0.0094	0.3430 ± 0.0057	0.5579 ± 0.0067	
IL	0.6404 ± 0.0058	0.3186 ± 0.0032	0.5345 ± 0.0048	
IL_CVAE	0.6410 ± 0.0058	0.3178 ± 0.0031	0.5346 ± 0.0047	
ResAct (Ours)	0.7980 ±0.0067	0.5433 ± 0.0045	0.6675 ±0.0053	