Deep Variational Implicit Processes

Luis A. Ortega Simón Rodriguez Santana Daniel Hernández-Lobato April 10, 2023

International Conference of Learning Representations

An **implicit stochastic process**¹ (IP) is a collection of random variables $f(\cdot)$ such that any finite collection $\mathbf{f} = \{f(\mathbf{x}_1), f(\mathbf{x}_2), \dots, f(\mathbf{x}_N)\}$ is implicitly defined by the following generative process:

$$\mathbf{z} \sim P_{\mathbf{z}}(\mathbf{z})$$
 and $f(\mathbf{x}_n) = g_{\theta}(\mathbf{x}_n, \mathbf{z}), \ \forall n = 1, \dots, N$.

¹Ma, C., Li, Y. & Hernandez-Lobato, J.M.. (2019). Variational Implicit Processes.

An **implicit stochastic process**¹ (IP) is a collection of random variables $f(\cdot)$ such that any finite collection $\mathbf{f} = \{f(\mathbf{x}_1), f(\mathbf{x}_2), \dots, f(\mathbf{x}_N)\}$ is implicitly defined by the following generative process:

$$\mathbf{z} \sim P_{\mathbf{z}}(\mathbf{z})$$
 and $f(\mathbf{x}_n) = g_{\theta}(\mathbf{x}_n, \mathbf{z}), \ \forall n = 1, \dots, N$.

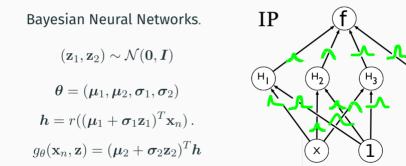
Gaussian process

$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, I)$$
 and $f(\mathbf{x}_n) = \boldsymbol{L}(\mathbf{x}_n)^T \mathbf{z}, \ \forall n = 1, \dots, N$.

¹Ma, C., Li, Y. & Hernandez-Lobato, J.M.. (2019). Variational Implicit Processes.

An **implicit stochastic process**¹ (IP) is a collection of random variables $f(\cdot)$ such that any finite collection $\mathbf{f} = \{f(\mathbf{x}_1), f(\mathbf{x}_2), \dots, f(\mathbf{x}_N)\}$ is implicitly defined by the following generative process:

$$\mathbf{z} \sim P_{\mathbf{z}}(\mathbf{z})$$
 and $f(\mathbf{x}_n) = g_{\theta}(\mathbf{x}_n, \mathbf{z}), \ \forall n = 1, \dots, N$.



¹Ma, C., Li, Y. & Hernandez-Lobato, J.M.. (2019). Variational Implicit Processes.

Variational Implicit Processes

Approximate $P(\mathbf{f})$ with a GP $P_{\mathcal{GP}}(\mathbf{f})$ based on samples $f_1(\cdot), \ldots, f_S(\cdot)$. Setting a standard Gaussian prior $P(\mathbf{a}) = \mathcal{N}(\mathbf{a}|\mathbf{0}, \mathbf{I})$.

$$f(\mathbf{x}) = \hat{m}(\mathbf{x}) + \mathbf{a}^T \hat{\phi}(\mathbf{x}) \implies P_{\mathcal{GP}}(\mathbf{f}) = \mathcal{N}(\hat{m}(\mathbf{x}), \hat{\phi}(\mathbf{x})^T \hat{\phi}(\mathbf{x})) .$$
$$\hat{\phi}(\mathbf{x}) = \frac{1}{\sqrt{S}} \left(f_1(\mathbf{x}) - \hat{m}(\mathbf{x}), \dots, f_S(\mathbf{x}) - \hat{m}(\mathbf{x}) \right)^{\mathsf{T}} .$$

Approximate $P(\mathbf{f})$ with a GP $P_{\mathcal{GP}}(\mathbf{f})$ based on samples $f_1(\cdot), \ldots, f_S(\cdot)$. Setting a standard Gaussian prior $P(\mathbf{a}) = \mathcal{N}(\mathbf{a}|\mathbf{0}, \mathbf{I})$.

$$f(\mathbf{x}) = \hat{m}(\mathbf{x}) + \mathbf{a}^T \hat{\phi}(\mathbf{x}) \implies P_{\mathcal{GP}}(\mathbf{f}) = \mathcal{N}(\hat{m}(\mathbf{x}), \hat{\phi}(\mathbf{x})^T \hat{\phi}(\mathbf{x})) .$$
$$\hat{\phi}(\mathbf{x}) = \frac{1}{\sqrt{S}} \left(f_1(\mathbf{x}) - \hat{m}(\mathbf{x}), \dots, f_S(\mathbf{x}) - \hat{m}(\mathbf{x}) \right)^{\mathsf{T}} .$$

- Defines a Gaussian process with a rich tunable kernel.
- · Approximates the distribution of an implicit process.

Approximate $P(\mathbf{f})$ with a GP $P_{\mathcal{GP}}(\mathbf{f})$ based on samples $f_1(\cdot), \ldots, f_S(\cdot)$. Setting a standard Gaussian prior $P(\mathbf{a}) = \mathcal{N}(\mathbf{a}|\mathbf{0}, \mathbf{I})$.

$$f(\mathbf{x}) = \hat{m}(\mathbf{x}) + \mathbf{a}^T \hat{\phi}(\mathbf{x}) \implies P_{\mathcal{GP}}(\mathbf{f}) = \mathcal{N}(\hat{m}(\mathbf{x}), \hat{\phi}(\mathbf{x})^T \hat{\phi}(\mathbf{x})) .$$
$$\hat{\phi}(\mathbf{x}) = \frac{1}{\sqrt{S}} \Big(f_1(\mathbf{x}) - \hat{m}(\mathbf{x}), \dots, f_S(\mathbf{x}) - \hat{m}(\mathbf{x}) \Big)^{\mathsf{T}} .$$

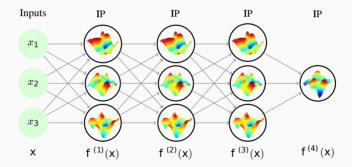
Using a variational distribution $Q(\mathbf{a}) = \mathcal{N}(\mathbf{m}, \mathbf{S})$ induces a variational distribution over functions

$$Q(\mathbf{f}) = \mathcal{N}\left(\hat{m}(\mathbf{x}) + \hat{\phi}(\mathbf{x})^T \mathbf{m}, \hat{\phi}(\mathbf{x})^T \mathbf{S} \hat{\phi}(\mathbf{x})\right).$$

Deep Variational Implicit Processes

Deep variational implicit processes (DVIPs) are models that consider a **deep implicit process** as the prior for the latent function.

They are a **multi-layer generalization** of IPs.

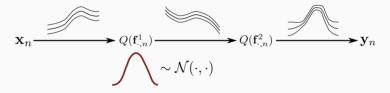


The input of a layer is the output of the previous one.

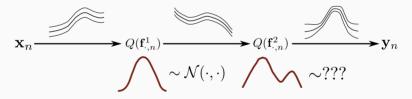
$$\mathcal{L} = \sum_{n=1}^{N} \mathbb{E}_{Q(\mathbf{f}_{\cdot,n}^{L})} \left[\log P(y_{n} | \mathbf{f}_{\cdot,n}^{L}) \right] - \sum_{l=1}^{L} \sum_{h=1}^{H_{l}} \mathsf{KL} \left(Q(\mathbf{a}_{h}^{l}) \mid P(\mathbf{a}_{h}^{l}) \right).$$

$$\mathcal{L} = \sum_{n=1}^{N} \mathbb{E}_{Q(\mathbf{f}_{\cdot,n}^{L})} \left[\log P(y_{n} | \mathbf{f}_{\cdot,n}^{L}) \right] - \sum_{l=1}^{L} \sum_{h=1}^{H_{l}} \mathsf{KL} \left(Q(\mathbf{a}_{h}^{l}) \mid P(\mathbf{a}_{h}^{l}) \right).$$

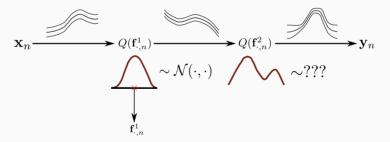
$$\mathcal{L} = \sum_{n=1}^{N} \mathbb{E}_{Q(\mathbf{f}_{\cdot,n}^{L})} \left[\log P(y_{n} | \mathbf{f}_{\cdot,n}^{L}) \right] - \sum_{l=1}^{L} \sum_{h=1}^{H_{l}} \mathsf{KL} \left(Q(\mathbf{a}_{h}^{l}) \mid P(\mathbf{a}_{h}^{l}) \right).$$



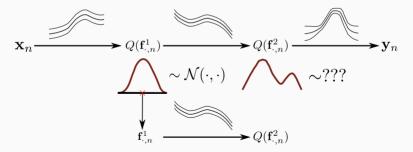
$$\mathcal{L} = \sum_{n=1}^{N} \mathbb{E}_{Q(\mathbf{f}_{\cdot,n}^{L})} \left[\log P(y_{n} | \mathbf{f}_{\cdot,n}^{L}) \right] - \sum_{l=1}^{L} \sum_{h=1}^{H_{l}} \mathsf{KL} \left(Q(\mathbf{a}_{h}^{l}) \mid P(\mathbf{a}_{h}^{l}) \right).$$



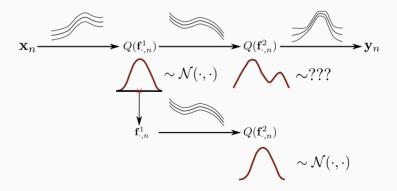
$$\mathcal{L} = \sum_{n=1}^{N} \mathbb{E}_{Q(\mathbf{f}_{\cdot,n}^{L})} \left[\log P(y_{n} | \mathbf{f}_{\cdot,n}^{L}) \right] - \sum_{l=1}^{L} \sum_{h=1}^{H_{l}} \mathsf{KL} \left(Q(\mathbf{a}_{h}^{l}) \mid P(\mathbf{a}_{h}^{l}) \right).$$



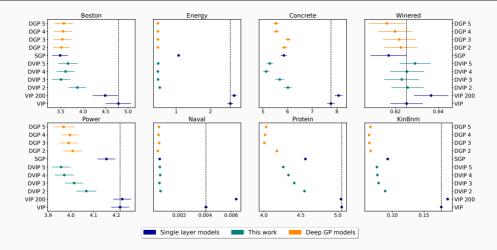
$$\mathcal{L} = \sum_{n=1}^{N} \mathbb{E}_{Q(\mathbf{f}_{\cdot,n}^{L})} \left[\log P(y_{n} | \mathbf{f}_{\cdot,n}^{L}) \right] - \sum_{l=1}^{L} \sum_{h=1}^{H_{l}} \mathsf{KL} \left(Q(\mathbf{a}_{h}^{l}) \mid P(\mathbf{a}_{h}^{l}) \right).$$



$$\mathcal{L} = \sum_{n=1}^{N} \mathbb{E}_{Q(\mathbf{f}_{\cdot,n}^{L})} \left[\log P(y_{n} | \mathbf{f}_{\cdot,n}^{L}) \right] - \sum_{l=1}^{L} \sum_{h=1}^{H_{l}} \mathsf{KL} \left(Q(\mathbf{a}_{h}^{l}) \mid P(\mathbf{a}_{h}^{l}) \right).$$

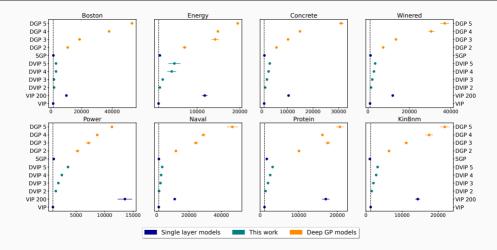


UCI Regression Benchmark (RMSE)

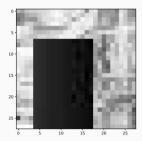


DGPs using the implementation from Salimbeni, H. & Deisenroth, M. (2017). Doubly Stochastic Variational Inference for Deep Gaussian Processes.

UCI Regression Benchmark (CPU Training Time)



DGPs using the implementation from Salimbeni, H. & Deisenroth, M. (2017). Doubly Stochastic Variational Inference for Deep Gaussian Processes. Changed IP prior so that the first layer uses **deterministic convolutional layers** and a **Bayesian fully connected layer**.



	SGP	VIP	DVIP 2	DVIP 3	DGP 3
Accuracy (%)	73.64	85.50	87.92	88.40	77.18
Likelihood	-0.526	-0.349	-0.294	-0.280	-0.472
AUC	0.826	0.931	0.952	0.956	0.857

• Implicit processes define a richer distribution over functions.

- Implicit processes define a richer distribution over functions.
- DVIPs can be used on a variety of regression and classification problems with **no need of hand-tuning**.

Conclusions

- Implicit processes define a richer distribution over functions.
- DVIPs can be used on a variety of regression and classification problems with **no need of hand-tuning**.
- DVIPs surpass or match the performance of single layer VIPs and DGPs.

Conclusions

- Implicit processes define a richer distribution over functions.
- DVIPs can be used on a variety of regression and classification problems with **no need of hand-tuning**.
- DVIPs **surpass or match the performance** of single layer VIPs and DGPs.
- DVIPs do not over-fit by increasing the depth.

- Implicit processes define a richer distribution over functions.
- DVIPs can be used on a variety of regression and classification problems with **no need of hand-tuning**.
- DVIPs **surpass or match the performance** of single layer VIPs and DGPs.
- DVIPs **do not over-fit** by increasing the depth.
- Increasing the number of layers is far more effective than increasing the complexity of the prior of single-layer VIPs.

- Implicit processes define a richer distribution over functions.
- DVIPs can be used on a variety of regression and classification problems with **no need of hand-tuning**.
- DVIPs **surpass or match the performance** of single layer VIPs and DGPs.
- DVIPs **do not over-fit** by increasing the depth.
- Increasing the number of layers is far more effective than increasing the complexity of the prior of single-layer VIPs.
- The use of **domain specific priors** has demonstrated to give outstanding results compared to other GP methods.

Thank you for your attention!