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An implicit stochastic process1 (IP) is a collection of random variables
f(·) such that any finite collection f = {f(x1), f(x2), . . . , f(xN )} is
implicitly defined by the following generative process:

z ∼ Pz(z) and f(xn) = gθ(xn, z), ∀n = 1, . . . , N .

1Ma, C., Li, Y. & Hernandez-Lobato, J.M.. (2019). Variational Implicit Processes.
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z ∼ N (0, I) and f(xn) = L(xn)
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implicitly defined by the following generative process:

z ∼ Pz(z) and f(xn) = gθ(xn, z), ∀n = 1, . . . , N .

Bayesian Neural Networks.

(z1, z2) ∼ N (0, I)

θ = (µ1,µ2,σ1,σ2)

h = r((µ1 + σ1z1)
Txn) .

gθ(xn, z) = (µ2 + σ2z2)
Th

1

1

IP f

1Ma, C., Li, Y. & Hernandez-Lobato, J.M.. (2019). Variational Implicit Processes.

1



Variational Implicit Processes

Approximate P (f) with a GP PGP(f) based on samples f1(·), . . . , fS(·).
Setting a standard Gaussian prior P (a) = N (a|0, I).

f(x) = m̂(x) + aT ϕ̂(x) =⇒ PGP(f) = N (m̂(x), ϕ̂(x)T ϕ̂(x)) .

ϕ̂(x) =
1√
S

(
f1(x)− m̂(x), . . . , fS(x)− m̂(x)

)T
.
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• Defines a Gaussian process with a rich tunable kernel.
• Approximates the distribution of an implicit process.
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Variational Implicit Processes

Approximate P (f) with a GP PGP(f) based on samples f1(·), . . . , fS(·).
Setting a standard Gaussian prior P (a) = N (a|0, I).

f(x) = m̂(x) + aT ϕ̂(x) =⇒ PGP(f) = N (m̂(x), ϕ̂(x)T ϕ̂(x)) .

ϕ̂(x) =
1√
S

(
f1(x)− m̂(x), . . . , fS(x)− m̂(x)

)T
.

Using a variational distribution Q(a) = N (m,S) induces a variational
distribution over functions

Q(f) = N
(
m̂(x) + ϕ̂(x)Tm, ϕ̂(x)TSϕ̂(x)

)
.
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Deep Variational Implicit Processes

Deep variational implicit processes (DVIPs) are models that consider a
deep implicit process as the prior for the latent function.

They are a multi-layer generalization of IPs.
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The input of a layer is the output of the previous one.
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ELBO

The evaluation of the ELBO,

L =

N∑
n=1

EQ(fL·,n)

[
logP

(
yn|fL·,n

)]
−

L∑
l=1

Hl∑
h=1

KL
(
Q(alh) | P (alh)

)
.

requires Q(fL·,n) which is intractable.
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UCI Regression Benchmark (RMSE)
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Doubly Stochastic Variational Inference for Deep Gaussian Processes. 5



UCI Regression Benchmark (CPU Training Time)
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Image Classification

Changed IP prior so that the first layer uses deterministic
convolutional layers and a Bayesian fully connected layer.

SGP VIP DVIP 2 DVIP 3 DGP 3

Accuracy (%) 73.64 85.50 87.92 88.40 77.18

Likelihood −0.526 −0.349 −0.294 −0.280 −0.472

AUC 0.826 0.931 0.952 0.956 0.857
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Conclusions

• Implicit processes define a richer distribution over functions.

• DVIPs can be used on a variety of regression and classification
problems with no need of hand-tuning.

• DVIPs surpass or match the performance of single layer VIPs and
DGPs.

• DVIPs do not over-fit by increasing the depth.
• Increasing the number of layers is far more effective than
increasing the complexity of the prior of single-layer VIPs.

• The use of domain specific priors has demonstrated to give
outstanding results compared to other GP methods.
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Thank you for your attention!
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