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The ability to work with unseen agents is crucial
for real-world deployment of AI systems

Introduction
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Capturing diverse behaviors that are compatible

- There may exist different behaviors that are fully compatible

- We propose to capture such behavioral variations by using a mutual 
information objective 
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Overall training objective for each joint policy

Aggregated 
cross-play return

Self-play 
return MI ELBO loss



Experiments



LIPO finds more solutions than the baselines



Qualitative results (PMR, point mass rendezvous)
Behaviors of 4 agents produced by a single run of LIPO in PMR-C.

Behaviors of 4 agents produced by a single run of LIPO in PMR-L.



MI objective helps induce local variation
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Qualitative results (multi-recipe Overcooked)
Behaviors of 8 agents produced by a single run of LIPO

Joint policy preference:
Tomato & Carrot Salad

Joint policy preference:
Single-ingredient recipes

Joint policy preference:
Chopped Lettuce

Joint policy preference:
Chopped Lettuce or Tomato

Joint policy preference:
Chopped Onion

Joint policy preference:
Tomato & Lettuce Salad

Joint policy preference:
Chopped Lettuce

Joint policy preference:
Tomato & Carrot Salad



Training generalist agents using generated agents



- Computationally expensive
- evaluate all possible policy pairs to minimize the cross-play return

- Adversarial vs other agents (addressed by Cui et. al., 2023)

Limitations

Cui, Brandon, et al. "Adversarial Diversity in Hanabi." International Conference on Learning Representations. 2023.



Summary
- Use generated agents as training 

partners

- LIPO generates behaviorally diverse 
agents by learning incompatible 
policies

- On top of LIPO objective, we utilize a 
mutual information objective to 
diversify local behaviors

- LIPO agents are useful for training a 
robust generalist agent



Thank you!
Poster # 118

Contact: rujikorn.c_s19@vistec.ac.th
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