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Reinforcement Learning (RL)
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Off-Policy RL: Off-Policy Evaluation (OPE)
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Neural network’s success in supervised learning:
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* Great universal function approximator

* Low sample complexity even with high data
dimension
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Q1: Can these nice properties in supervised
learning be preserved in RL?

Q2: What does it take? Are standard RL
assumptions enough?




Off-Policy Evaluation (OPE)

Episodic MDP: state space S, action space A, horizon H
time-inhomogeneous transition kernel {P, }}/_;
time-inhomogeneous reward {1y, }1i—;

H K
Off-policy dataset: D = {{(sn,e @k Shio i)}y |

K
For every step h, {Sh'k}k:1 are i.i.d.

k=1

K : .
{ah'k}kzl are generated from unknown behavior policy 1.

Goal: Given off-policy dataset D, estimate the value of target policy t from a
fixed initial state distribution ¢, given by
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Convolutional Neural Networks (CNN)
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F: class of all such CNNs s.t. ||Wi|lw, [|B;llco < T,

filter size bounded by I,
number of channels bounded by J,
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Learning on a low-dimensional manifold

* Data represented in R?, actually on a d-dim manifold (d <« D)
RL: State-action space X = S XA

* Ground truth: Q-functions {Q7}_,

Nonparametric Besov functions from X to R




Algorithm

Neural Fitted Q-Evaluation (Neural FQE)
Forh=H, ..., 1:

Sample Dy, = {(Sh,k » Ap k ,S;'l,k ;Th,k)}I;:l

K 2

Q\;;[ «— argminfeyz 2 <f(sh,k ) ah,k) —Thik — qu Q\frl[+1(si’l,k , a)nh(a|5,'l’k)da>

k=1

v = Q7 (s, @) m(als)§ (s)d(s, a)
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Assumptions

Assumption 1 X = SXA is d-dimensional compact Riemannian
manifold isometrically embedded in R?. Vx € X, ||x||, < B.

Assumption 2 (Bellman completeness) Under target policy T, Vh, Vf € F,
Tn' f € By 4(X) and there exists ¢y s.t. IITh”fIIng(X) < cp.

[Ruosong Wang et al. 20]: Even with linear realizability & good data
coverage,

3 an MDP s.t. all algorithms need Q((D/Z)H) samples for OPE up to
constant error w.p. 0.9.

Easily satisfied if MDP has “smooth” dynamics.

[Ruosong Wang et al. 20] Wang, Ruosong, Dean P. Foster, and Sham M. Kakade. "What are the Statistical Limits of Offline RL with Linear Function Approximation?." arXiv preprint arXiv:2010.11895 (2020).



Results

Main theorem:

Under Assumption 1 and 2, let F be the class of CNNs with magnitude V = H, number of channels ] = 0(D),
d
M= O(Km) layers each with L = O(log K + D) filters. Neural FQE achieves

a
E|9™ — v™| < CH?kK ™ Za+d log?° K, (1)
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where

qr is the state-action occupancy measure of target policy it at step h;
q;fo is the sampling distribution for step h.
G is the Minkowski sum of B ,(X) and F, i.e. § = {g1+92: 91 € By ¢(X), g2 € F}.

* Estimation error depends mostly on d
T

e Better distributional mismatch characterization than absolute continuity ||
p

co



Experiments

CartPole in high resolution CartPole in low resolution
(A) No distribution shift (B) Off-policy
High res Low res High res Low res
64.6 20 | 63.5+£19 | 60.4+2.8 | 60.0+3.3
Ground truth: 65.2 660L13 | 66517 | 67.0L18 | 68.0L2.3
656.1£1.0 | 65.1£1.2 | 65.0x1.6 | 65.1 = 2.0

Neural FQE performs similarly on both datasets = estimation error mostly independent from
data representation dimension
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