Sample Complexity of Nonparametric Off-Policy Evaluation on Low-Dimensional Manifolds Using Deep Networks

Xiang Ji, Minshuo Chen, Mengdi Wang, Tuo Zhao

Reinforcement Learning (RL)

Transition samples (s, a, s', r)

Off-Policy RL: Off-Policy Evaluation (OPE)

Deep RL

Neural network's success in supervised learning:

- Great universal function approximator
- Low sample complexity even with high data dimension

Generalization error
$$\sim \sqrt{\frac{\text{Comp}(\mathcal{F})}{n}} = \sqrt{\frac{f(D)}{n}}$$

Q1: Can these nice properties in supervised learning be preserved in RL?

Q2: What does it take? Are standard RL assumptions enough?

Off-Policy Evaluation (OPE)

Episodic MDP: state space S, action space A, horizon H time-inhomogeneous transition kernel $\{P_h\}_{h=1}^H$ time-inhomogeneous reward $\{r_h\}_{h=1}^H$

Off-policy dataset:
$$\mathcal{D} = \left\{ \left\{ \left(s_{h,k}, a_{h,k}, s'_{h,k}, r_{h,k}\right) \right\}_{h=1}^{H} \right\}_{k=1}^{K} \right\}_{k=1}^{K}$$

For every step h , $\left\{s_{h,k}\right\}_{k=1}^{K}$ are i.i.d.
 $\left\{a_{h,k}\right\}_{k=1}^{K}$ are generated from unknown behavior policy π_{0} .

Goal: Given off-policy dataset \mathcal{D} , **estimate** the value of <u>target policy</u> π from a fixed initial state distribution ξ , given by

$$v^{\pi} \coloneqq \mathbb{E}^{\pi} \left[\sum_{h=1}^{H} r_h(s_h, a_h) \mid s_1 \sim \xi \right]$$

Convolutional Neural Networks (CNN)

 $\begin{aligned} \mathcal{F}: \text{ class of all such CNNs s.t. } \|\boldsymbol{W}_i\|_{\infty}, \|\boldsymbol{B}_i\|_{\infty} \leq \tau, \\ & \text{ filter size bounded by } I, \\ & \text{ number of channels bounded by } J, \\ & \|f\|_{\infty} \leq V \end{aligned}$

Learning on a low-dimensional manifold

- Data represented in \mathbb{R}^D , actually on a d-dim manifold ($d \ll D$) RL: State-action space $\mathcal{X} \coloneqq S \times \mathcal{A}$
- Ground truth: Q-functions $\{Q_h^{\pi}\}_{h=1}^{H}$ Nonparametric Besov functions from \mathcal{X} to \mathbb{R}

Algorithm

Neural Fitted Q-Evaluation (Neural FQE)

For h = H, ... , 1:

Sample
$$\mathcal{D}_{h} = \left\{ \left(s_{h,k}, a_{h,k}, s_{h,k}', r_{h,k} \right) \right\}_{k=1}^{K}$$

 $\hat{Q}_{h}^{\pi} \leftarrow \operatorname{argmin}_{f \in \mathcal{F}} \sum_{k=1}^{K} \left(f\left(s_{h,k}, a_{h,k} \right) - r_{h,k} - \int_{\mathcal{A}} \hat{Q}_{h+1}^{\pi} \left(s_{h,k}', a \right) \pi_{h} \left(a | s_{h,k}' \right) \mathrm{d}a \right)^{2}$
 $\hat{v}^{\pi} \coloneqq \int_{\mathcal{S} \times \mathcal{A}} \hat{Q}_{1}^{\pi} \left(s, a \right) \pi(a | s) \xi(s) \mathrm{d}(s, a)$

Assumptions

<u>Assumption 1</u> $\mathcal{X} \coloneqq S \times \mathcal{A}$ is *d*-dimensional compact Riemannian manifold isometrically embedded in \mathbb{R}^{D} . $\forall x \in \mathcal{X}, ||x||_{\infty} \leq B$.

<u>Assumption 2</u> (Bellman completeness) Under target policy π , $\forall h$, $\forall f \in \mathcal{F}$, $\mathcal{T}_{h}^{\pi}f \in \mathcal{B}_{p,q}^{\alpha}(\mathcal{X})$ and there exists c_{0} s.t. $\|\mathcal{T}_{h}^{\pi}f\|_{\mathcal{B}_{p,q}^{\alpha}(\mathcal{X})} \leq c_{0}$.

[Ruosong Wang et al. 20]: Even with linear realizability & good data coverage,

 \exists an MDP s.t. all algorithms need $\Omega((D/2)^H)$ samples for OPE up to constant error w.p. 0.9.

Easily satisfied if MDP has "smooth" dynamics.

Results

Main theorem:

Under Assumption 1 and 2, let \mathcal{F} be the class of CNNs with magnitude V = H, number of channels J = O(D), M = $O(K^{\frac{d}{2\alpha+d}})$ layers each with $L = O(\log K + D)$ filters. Neural FQE achieves

$$\mathbb{E}|\hat{v}^{\pi} - v^{\pi}| \le CH^2 \kappa K^{-\frac{\alpha}{2\alpha+d}} \log^{2.5} K, \qquad (1)$$

where

$$\kappa \coloneqq \frac{1}{H} \sum_{h=1}^{H} \sqrt{\sup_{f \in \mathcal{G}} \frac{\mathbb{E}_{q_h^{\pi}}[f(x)]^2}{\mathbb{E}_{q_h^{\pi_0}}[f(x)^2]}}}$$

 q_h^{π} is the state-action occupancy measure of target policy π at step h; $q_h^{\pi_0}$ is the sampling distribution for step h. \mathcal{G} is the Minkowski sum of $\mathcal{B}_{p,q}^{\alpha}(\mathcal{X})$ and \mathcal{F} , i.e. $\mathcal{G} = \{g_1 + g_2 : g_1 \in \mathcal{B}_{p,q}^{\alpha}(\mathcal{X}), g_2 \in \mathcal{F}\}.$

- Estimation error depends mostly on *d*
- Better distributional mismatch characterization than absolute continuity $\left\|\frac{q_h^{\pi}}{a^{\pi_0}}\right\|$.

CartPole in high resolution

CartPole in low resolution

(A) No distribution shift		(B) Off-policy	
High res	Low res	High res	Low res
64.6 ± 2.0	63.5 ± 1.9	60.4 ± 2.8	60.0 ± 3.3
66.0 ± 1.3	66.5 ± 1.7	67.0 ± 1.8	68.0 ± 2.3
65.1 ± 1.0	65.1 ± 1.2	65.0 ± 1.6	65.1 ± 2.0

Ground truth: 65.2

Neural FQE performs similarly on both datasets \Rightarrow estimation error mostly independent from data representation dimension

Thank you!