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Reinforcement Learning (RL)
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Off-Policy RL: Off-Policy Evaluation (OPE)
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Deep RL
Neural network’s success in supervised learning:

• Great universal function approximator

• Low sample complexity even with high data 
dimension

Generalization error ~ Comp ℱ
' = ((*)

'

Q1: Can these nice properties in supervised 
learning be preserved in RL?

Q2: What does it take? Are standard RL 
assumptions enough? 



Off-Policy Evaluation (OPE)
Episodic MDP: state space 𝑆, action space 𝐴, horizon 𝐻

time-inhomogeneous transition kernel 𝑃, ,-.
/

time-inhomogeneous reward 𝑟, ,-.
/

Off-policy dataset: 𝒟 = 𝑠,,1, 𝑎,,1, 𝑠,,1! , 𝑟,,1 ,-.
/

1-.
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For every step ℎ, 𝑠,,1 1-.
2

are i.i.d.

𝑎,,1 1-.
2

are generated from unknown behavior policy 𝜋3.

Goal: Given off-policy dataset 𝒟, estimate the value of target policy π from a 
fixed initial state distribution ξ, given by 

𝑣4 ≔ 𝔼4 7
,-.

/

𝑟, 𝑠,, 𝑎, | 𝑠. ~ 𝜉



Convolutional Neural Networks (CNN)
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× 𝐿

ReLU …… 𝒛"

×𝑀ℱ: class of all such CNNs s.t. 𝑾! ", 𝑩! " ≤ 𝜏,
filter size bounded by 𝐼,
number of channels bounded by 𝐽,
𝑓 " ≤ 𝑉

Zero 
padding



Learning on a low-dimensional manifold

• Data represented in ℝ(, actually on a 𝑑-dim manifold (𝑑 ≪ 𝐷)
RL: State-action space 𝒳 ≔ 𝒮×𝒜

• Ground truth: Q-functions 𝑄)* )+,
-

Nonparametric Besov functions from 𝒳 to ℝ



Algorithm

.𝑄#$ ← argmin%∈ℱ7
()*

+

𝑓 𝑠#,( , 𝑎#,( − 𝑟#,( −>
𝒜
.𝑄#.*$ 𝑠#,(/ , 𝑎 𝜋# 𝑎 𝑠#,(/ d𝑎
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Neural Fitted Q-Evaluation (Neural FQE)

For h = H, … , 1: 

A𝑣$ ≔ >
𝒮×𝒜

.𝑄*$ 𝑠, 𝑎 𝜋 𝑎 𝑠 𝜉 𝑠 d 𝑠, 𝑎

Sample 𝒟# = 𝑠#,( , 𝑎#,( , 𝑠#,(/ , 𝑟#,( ()*
+



Assumptions
Assumption 1 𝒳 ≔ 𝒮×𝒜 is 𝑑-dimensional compact Riemannian 
manifold isometrically embedded in ℝ(. ∀𝑥 ∈ 𝒳, 𝑥 G ≤ 𝐵.

Assumption 2 (Bellman completeness) Under target policy 𝜋, ∀ℎ, ∀𝑓 ∈ ℱ,
𝒯)*𝑓 ∈ ℬH,IJ 𝒳 and there exists 𝑐K s.t. 𝒯)*𝑓 ℬ!,#$ 𝒳 ≤ 𝑐K. 

[Ruosong Wang et al. 20]: Even with linear realizability & good data 
coverage,
∃ an MDP s.t. all algorithms need Ω 𝐷/2 - samples for OPE up to 
constant error w.p. 0.9.

Easily satisfied if MDP has “smooth” dynamics.
[Ruosong Wang et al. 20] Wang, Ruosong, Dean P. Foster, and Sham M. Kakade. "What are the Statistical Limits of Offline RL with Linear Function Approximation?." arXiv preprint arXiv:2010.11895 (2020).



Results
Main theorem:

Under Assumption 1 and 2, let ℱ be the class of CNNs with magnitude V = 𝐻, number of channels J = 𝑂 𝐷 , 

M = 𝑂 𝐾
!

"#$! layers each with 𝐿 = 𝑂 log𝐾 + 𝐷 filters. Neural FQE achieves 

𝔼 A𝑣$ − 𝑣$ ≤ 𝐶𝐻0𝜅𝐾3
4

04.5 log0.7𝐾 ,
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𝑞#$ is the state-action occupancy measure of target policy π at step h;
𝑞#
$. is the sampling distribution for step h. 
𝒢 is the Minkowski sum of ℬ?,@4 𝒳 and ℱ, i.e. 𝒢 = 𝑔* + 𝑔0 ∶ 𝑔* ∈ ℬ?,@4 𝒳 ,𝑔0 ∈ ℱ .

• Estimation error depends mostly on 𝑑

• Better distributional mismatch characterization than absolute continuity ,%
-

,%
-.

A
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Experiments

Neural FQE performs similarly on both datasets  ⇒ estimation error mostly independent from
data representation dimension 

CartPole in high resolution CartPole in low resolution

Ground truth: 65.2



Thank you!


