Designing BERT for Convolutional Networks: Sparse and Hierarchical Masked Modeling

Keyu Tian¹, Chen Lin³, ¹Peking University Yi Jiang²*, Liwei Wang¹*, ²Bytedance Inc.

Qishuai Diao², **Zehuan Yuan**² ³University of Oxford

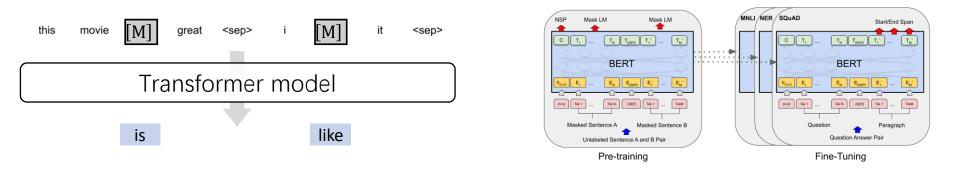
codes & models

github.com/keyu-tian/SparK

⊠ tiankeyu.00@gmail.com

Background: BERT-style self-supervised pretraining

> BERT-style pretraining (aka. masked modeling/autoencoding) in NLP, mainly on Transformers



▶ BERT (MAE) Has been successfully applied on Vision Transformers (BEiT [2], MAE [3])

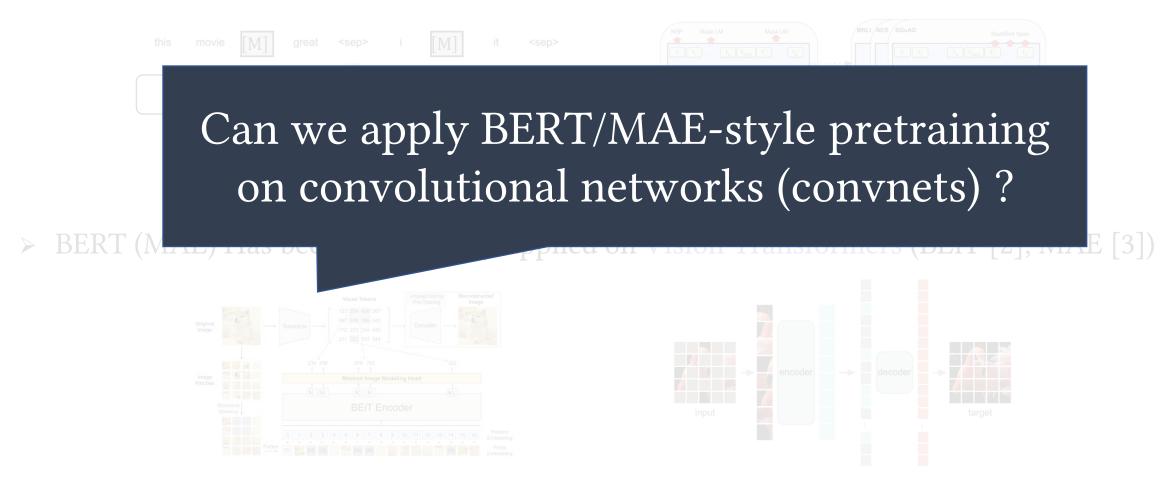
[1] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

[2] Bao, Hangbo, et al. "Beit: Bert pre-training of image transformers." arXiv preprint arXiv:2106.08254 (2021).

[3] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

Background: BERT-style self-supervised pretraining

> BERT-style pretraining (aka. masked modeling/autoencoding) in NLP, mainly on Transformers



[1] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

[2] Bao, Hangbo, et al. "Beit: Bert pre-training of image transformers." arXiv preprint arXiv:2106.08254 (2021).

[3] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

Unfortunately, BERT for convnet is still an open problem

Early works [4,5]: pioneering, but may not successful

pretraining	cls.	det.	seg.
supervised	79.9 (-0.0)	56.8 (-0.0)	48.0 (-0.0)
[1] CVPR'16	56.5 (- <mark>23.4)</mark>	44.5 (-12.3)	29.7 <mark>(-18.3)</mark>
[2] CVPR'17	67.1 <mark>(-12.8)</mark>	46.7 <mark>(-10.1)</mark>	36.0 (-12.0)

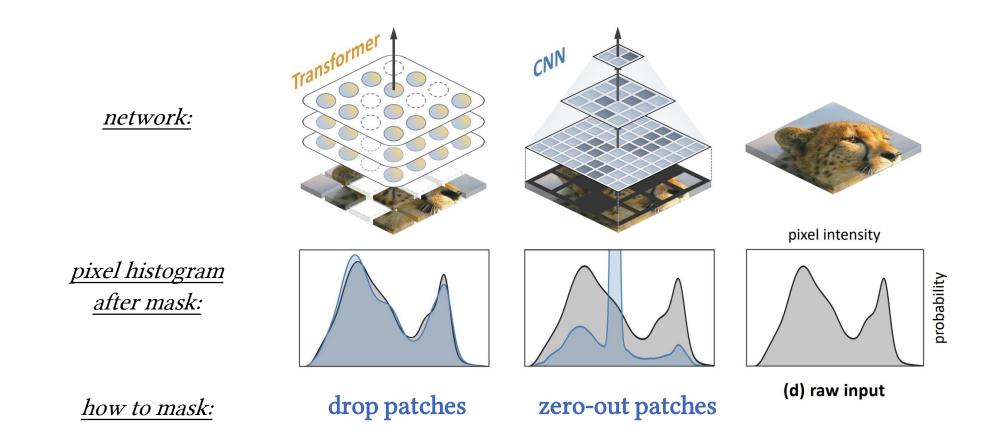
Replacing the ViT in MAE to a convnet: still failed (useless pretraining)

pretraining method	cls. acc.
not pretrained	83.1 (-0.0)
MAE (ViT → ConvNeXt)	83.2 (+0.1)
SparK (ours, introduced next)	84.1 (+1.0)

[4] Pathak, Deepak, et al. "Context encoders: Feature learning by inpainting." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. [5] Zhang, Richard, et al. "Split-brain autoencoders: Unsupervised learning by cross-channel prediction." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

We found some issues when applying BERT on convnets

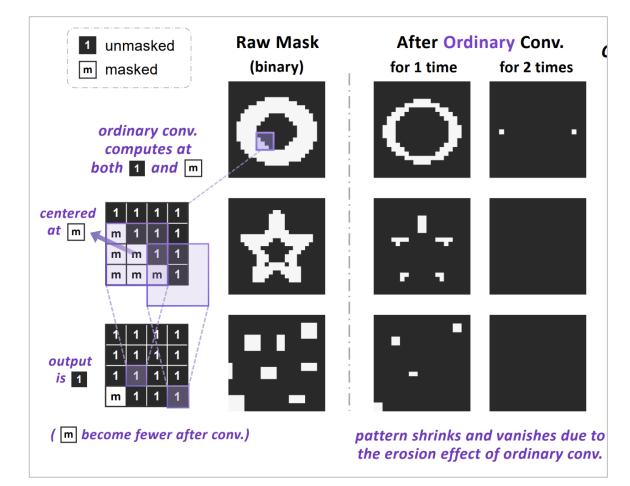
issue 1: pixel intensity distribution changed a lot after "masking" (zero outing)

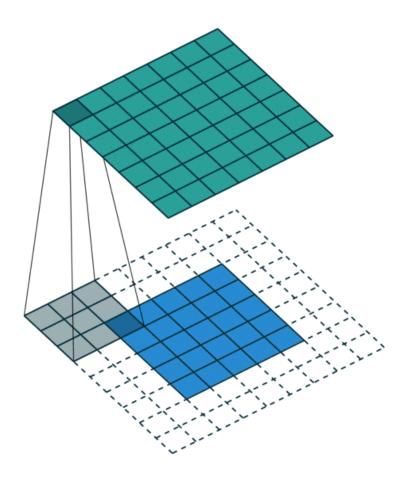


5

We found some issues when applying BERT on convnets

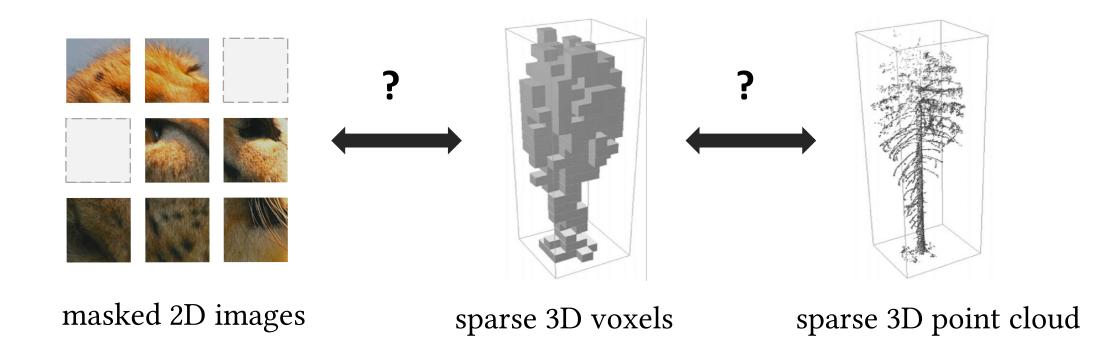
issue 1: pixel intensity distribution changed a lot after "masking" (zero outing)issue 2: the pattern of binary masks will vanish after several convolutions





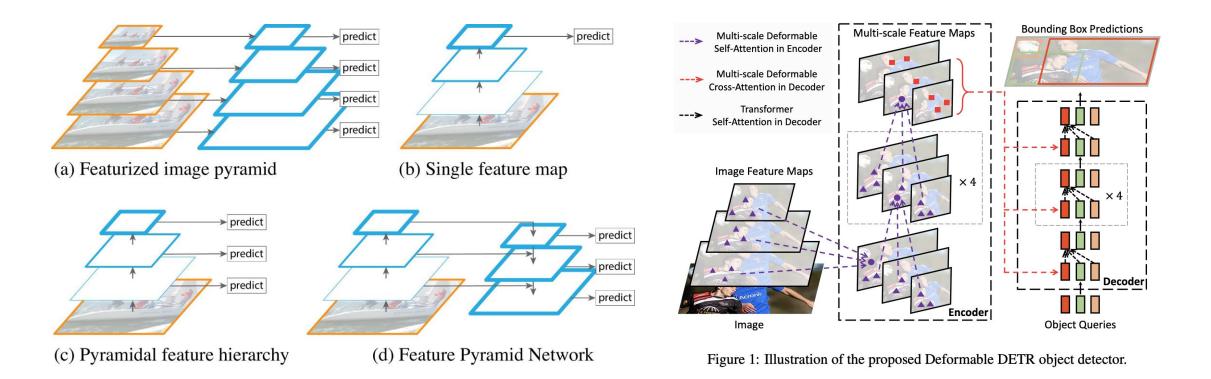
We found some issues and propose the solutions

issues 1 & 2: pixel intensity distribution shift & mask pattern vanishingour motivation: the sparse nature of masked image coincides with sparse 3D point cloudour solution: treat masked images as flatten point clouds, and use sparse convolutions [6]



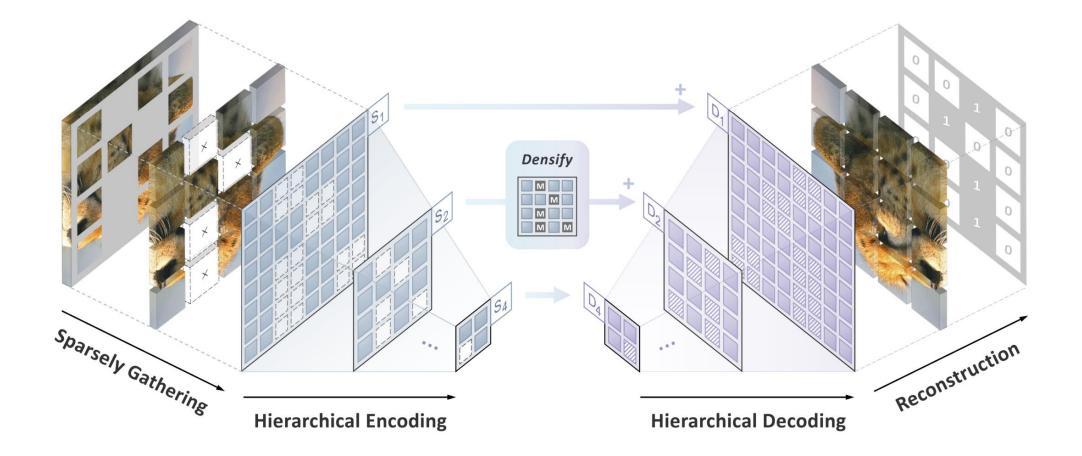
We found some issues and propose the solutions

issues 3: the single scale nature of BERT-pretraining is inconsistent with convnet's multi scale our solution: using a UNet-style encoder-decoder to learn multi scale (hierarchical) features



multi-scale matters in computer vision (left: FPN, right: def. DETR)

An overview of SparK



SparK: Sparse and hierarchical masKed modeling

Experimental results

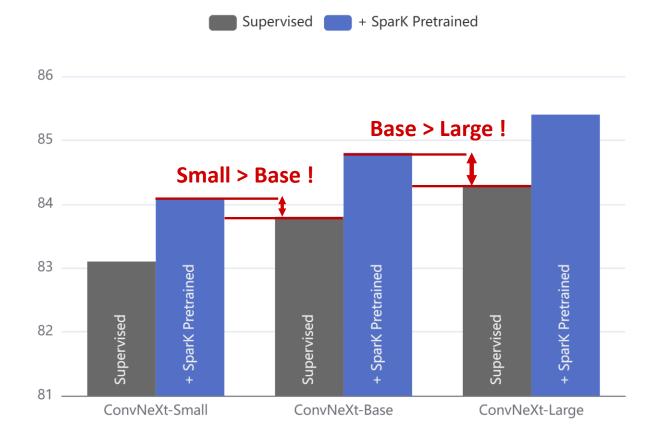
> SparK pretrained convnet beat pretrained Swin-Transformer

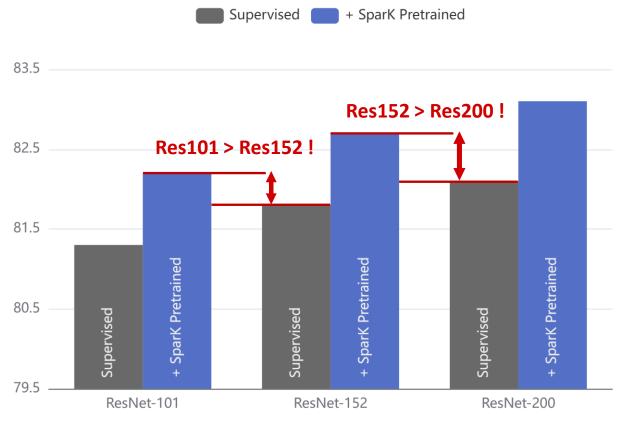
Dra training mathad	Arch.	Eff. ²	Cls.	Det.		Seg.	
Pre-training method	Alcii.	epoch	Acc.	AP ^{bb}	AP_{75}^{bb}	AP ^{mk}	AP ^{mk} ₇₅
MoCov3 (Chen et al., 2021)	ViT-B	1600	83.2	47.9	_	42.7	_
BEiT (Bao et al., 2021)	ViT-B	800	83.2	49.8	_	44.4	-
Supervised (He et al., 2021)	ViT-B	300	82.3	47.9	_	42.9	
MAE (He et al., 2021)	ViT-B	1600	83.6	50.3	—	44.9	_
improvements over baseline			+1.3	+2.4	—	+2.0	_
Supervised (Liu et al., 2021)	Swin-B	300	83.5	48.5	53.2	43.2	46.7
SimMIM (Xie et al., 2021)	Swin-B	800	84.0	50.4	55.5	44.4	47.9
improvements over baseline			+0.5	+1.9	+2.3	+1.2	+1.2
Supervised [‡] (Liu et al., 2022)	ConvX-B	300	83.8	47.7	52.6	43.2	46.6
Spark (ours)	ConvX-B	1600	84.8	51.2	56.1	45.1	48.9
improvements over baseline			+1.0	+3.5	+3.5	+1.9	+2.3

- without pretraining, Swin-B and ConvNeXt-B perform similarly
- ➤ with pretraining (SimMIM/SparK), ConvNeXt-B outperforms Swin-B by large margin (≈+0.8)
- this **strongly** verified the effectiveness of SparK pretraining

Experimental results

With SparK, smaller models can beat larger models! (cnx-small > cnx-base; Res101 > Res152)





another solid proof of SparK's effectiveness

Experimental results

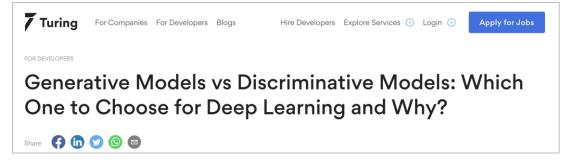
Good scaling behavior; SparK works on all convnets (ResNets, ConvNeXts, etc...)

Architecture	Reso.	#Para. (M)	FLOPs (G)	Baseline Acc.	Spark Acc.	Δ	Reach the next level	
Classical Architecture								
ResNet-50	224	25.6	4.1	79.8	80.6	+0.8	X	
ResNet-101	224	44.5	7.9	81.3	82.2	+0.9	1	
ResNet-152	224	60.2	11.6	81.8	82.7	+0.9	1	
ResNet-200	224	64.7	15.1	82.1	83.1	+1.0	—	
Modern Architecture								
ConvNeXt-Small	224	50.0	8.7	83.1	84.1	+1.0	1	
ConvNeXt-Base	224	89.0	15.4	83.8	84.8	+1.0	\checkmark	
ConvNeXt-Large	224	198	34.4	84.3	85.4	+1.1	—	
ConvNeXt-Large	384	198	101	84.3	86.0	+1.7	—	

> 🕢 On ResNets, Generative pre-training surpasses Contrastive Learning for the first time

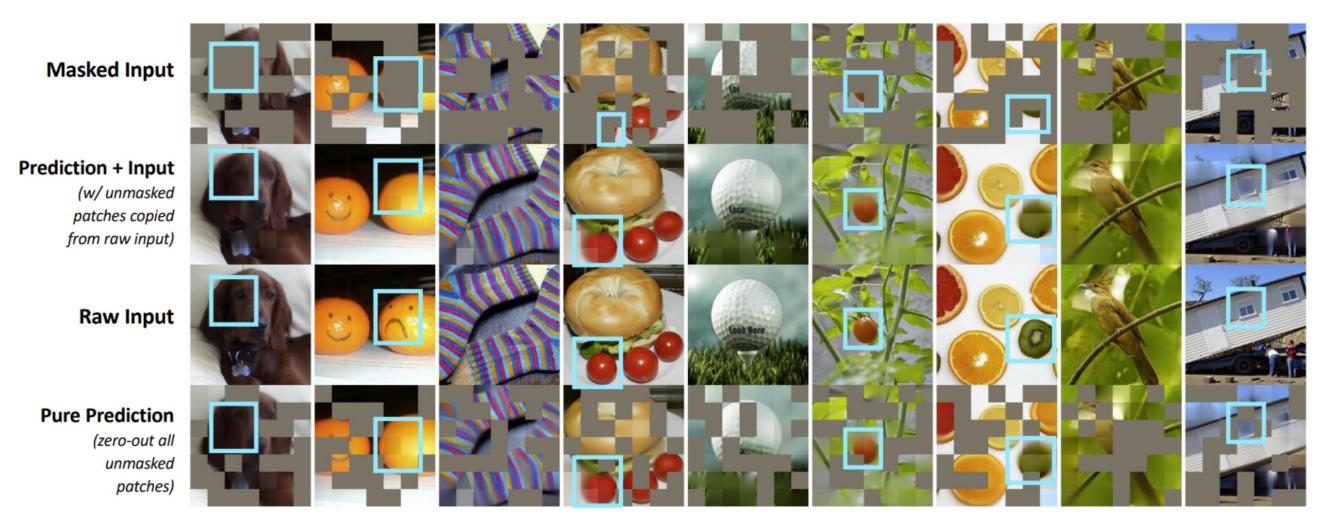
Pre-training (on ResNet-50)	Pre-train task	Eff. epoch	Cls. (Acc.)	$\begin{array}{ll} 1\times \text{Schedule} \\ \text{AP}^{\text{bb}} & \text{AP}^{\text{mk}} \end{array}$		$\begin{array}{c} 2\times \text{ Schedule} \\ \text{AP}^{\text{bb}} \text{AP}^{\text{mk}} \end{array}$	
Supervised	_	_	79.8	38.9	35.4	41.3	37.3
SimSiam (Chen & He, 2021)	Contrastive	800	79.1	_	—	_	_
MoCo (He et al., 2020)	Contrastive	800	_	38.5	35.1	40.8	36.9
MoCov2 (Chen et al., 2020b)	Contrastive	1600	79.8	40.4	36.4	41.7	37.6
SimCLR (Chen et al., 2020a)	Contrastive	4000	80.0	_	—	_	—
InfoMin (Tian et al., 2020)	Contrastive	800	_	40.6	36.7	42.5	38.4
BYOL (Grill et al., 2020)	Contrastive	1600	80.0	40.4	37.2	42.3	38.3
SwAV (Caron et al., 2020)	Contrastive	1200	80.1	_	_	42.3	38.2
SparK (ours)	Generative	1600	80.6	41.6	37.7	43.4	39.4

Learning effective visual representations without human supervision is a long-standing problem. Most mainstream approaches fall into one of two classes: generative or discriminative. Generative approaches learn to generate or otherwise model pixels in the input space (Hinton et al., 2006; Kingma & Welling, 2013; Goodfellow et al., 2014).



Visualizations

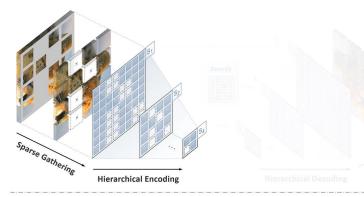
> 🔀 The model can make different but reasonable predictions



Visualizations

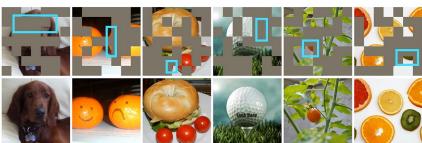
> 🕢 We've also uploaded an animated video, and some visualization demos on GitHub

SparK: The first BERT-style Pretraining on any CNN ! (e.g., ResNet)



Part 1. How to pretrain a CNN using only <u>unlabeled</u> images?

a) randomly mask the input image
b) sparsely gather non-masked patches
c) encode this sparse image
and de
d) perform multi-scale decoding
e) predict (reconstruct) the missing



Part 2. How well does the CNN model predict?

← <u>Masked input</u> or prediction

← Original Input (the ground tru

Colab Visualization Demo

Check pretrain/viz_reconstruction.ipynb for visualizing the reconstruction.ipynb for visualizing the reconstruction.ipy

: show(spark, 'vizl.png', active_blff=None)

input

reconstructed

rand masked

- ➢ we tried to analyze the fundamental challenges in applying BERT to convnets
- ➢ we proposed SparK, a BERT-style self-supervised pretraining for any convnet
- SparK shows a lot of inspiring experimental results
- > codes, visualization playgrounds, and pretrained models are all released on GitHub
- Come to our poster or GitHub playground!

Thanks!

codes &

models

github.com/keyu-tian/SparK

⊠ tiankeyu.00@gmail.com