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• Complete characterization of up to two graph convolutions (GCs) in 
networks with up to 3 layers


• Improvement in the classification threshold


• Comparison of various placement choices for convolutions


• Theoretical analysis on contextual stochastic block model (CSBM) 
modelled after XOR data


• Extensive experiments in various settings to illustrate our results

Contributions



Graph Convolutions
• Dataset of  nodes, each node has -dimensional features


•  denotes features of node 


• Undirected edges between nodes denoted by adjacency matrix 


•  denotes the diagonal degree matrix


Convolved feature matrix: 
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Architecture
• Two sources of information: (A, X)

• A generalization of Kipf and Welling’s GCN with variable GCs at each layer

• Similar models analyzed previously with power iterations in the last layer 

(APPNP) or first layer (SIGN):

• Empirically known to have comparable performance to SOTA

• input data


•  sigmoid function


•  output of the network


• number of GCs in layer 

X ∈ ℝn×d →
φ →
ŷ →
kl → l



Data model

• Linear classifiers can be realized using one-layer NNs


• Class of one-layer NNs is too simple to capture the extent of GC effects


• Need to look at multi-layer NNs for placement questions


• Identification of the relevant SNR in the data



Data model
• Four-component XOR-based Gaussian Mixture Model (GMM) coupled 

with a Stochastic Block Model (SBM)


• Two classes  
 data points with features 


•  

C0, C1
n (Xi)n

i=1 ∈ ℝd

A ∼ SBM(p, q)

ℙ(Aij = 1) = {p if i, j are in the same class
q otherwise

•  if  
 if 

Xi ∼ 𝒩(±μ, σ2I) i ∈ C0
Xi ∼ 𝒩(±ν, σ2I) i ∈ C1



Data model

• Identified signals in data


ζ =
∥μ − ν∥

σ
, Γ =

|p − q |
p + q

•  A ∼ SBM(p, q)

ℙ(Aij = 1) = {p if i, j in same class
q otherwise

•  if  
 if 

Xi ∼ 𝒩(±μ, σ2I) i ∈ C0
Xi ∼ 𝒩(±ν, σ2I) i ∈ C1



Data model

Original input node features

GC in first layer 

Features after GC at the first layer

A typical two-layer GCN (one GC in each layer) performs poorly on this data



Baseline — No graph
• Characterize fraction of misclassifications in terms of GMM signal


(Fraction of errors) 


• 


• 


• 


• Conclusion:  makes a constant number of mistakes. So the 
threshold for perfect classification should be 

f = 2Φc(ζ/2)2

ζ → ∞ ⟹ f → 0
ζ → 0 ⟹ f → 1/2
ζ → O( log n) ⟹ n ⋅ f → Ω(1)

ζ = O( log n)
ζ = ω( log n)



Main Result — With Graph
Number of GCs Perfect Classification Threshold Reference

0 Theorem 1

1 Theorem 2 part 1

2 Theorem 2 part 2

ζ = ω( log n)

Γ ⋅ ζ = ω( log n
n(p + q) )

Γ2 ⋅ ζ = ω( log n
n )



Main result

Comparison of the performance of models with 1 GC vs 2 GCs



Main result

Comparison of the performance of models with 1 GC vs 2 GCs



Experiments on real data

2-layer models on OGBN-ARXIV



Experiments on real data

3-layer models on OGBN-ARXIV



Experiments on real data

2-layer models on OGBN-PRODUCTS



Experiments on real data

3-layer models on OGBN-PRODUCTS



Conclusions

• Theoretical characterization of the capacity of GCs placed across different 
layers of an MLP


• High-probability classification guarantees in terms of signals in the data


• Any combination of the placement of GCs in an MLP achieves similar 
performance if number of GCs is the same


• 2 GCs are better than 1 GC only when the graph is relatively sparser


