

1

Associative Memory Augmented Asynchronous Spatiotemporal Representation Learning for Event-based Perception

Uday Kamal*, Saurabh Dash*, Saibal Mukhopadhyay

School of Electrical and Computer Engineering Georgia Institute of Technology

ICLR 2023 Eleventh International Conference on Learning Representations

Event-based Camera: An Overview

Event camera records per-pixel brightness change asynchronously

Advantage over frame-based camera:

- High dynamic range (>120db)
- Ultra-low latency
- High temporal resolution (~15 µs)
- Low power consumption (~10 mW)

Event-based Camera: An Overview

Event camera records per-pixel brightness change asynchronously

Advantage over frame-based camera:

- High dynamic range (>120db)
- Ultra-low latency
- High temporal resolution (~15 µs)
- Low power consumption (~10 mW)

Past events Event-based Perception Past perceptions

New perception

Key Algorithm Challenges:

- **Spatiotemporal encoding:** Encoding of events to a latent-representation that can correlate across both space and time
- Efficient update: Update latent representation only 'when' and 'where' there is an event
- **Task specific decoding:** Decode the latent representation to target task output.

Existing Works

Representation	Proc	essing Method	Limitation
Event-aggregated Frames	CNN	Temporal aggregation of the events maps them into discrete, dense frames and use CNN ¹	Dense processing, discards the sparse nature of the events and wasteful of computations
Spatiotemporal Event Graph	GNN	Maps events into a spatiotemporal graph and apply graph neural networks (GNN) ²	Requires storing the past events on the space-time graph and re-processing them
Events as Point Clouds	PointNet	Treats events as space-time point-cloud and applies point- based processing ³	Requires storing and processing the past events to correlate with new events

- 1. Gehrig et al., End-to-end Representation Learning for Event-based Camera, ICCV'19
- 2. Li et al., Graph-based Asynchronous Event Processing for Rapid Object Recognition. ICCV'21
- 3. Wang et al., Space-time Event Cloud for Hand Gesture Recognition, WACV'19

Given a list of events at time *t*, EventFormer:

- **Refine :** Models higher-order interaction among the events (space).
- **Read:** Retrieves past representations at current event locations (time).
- **Recurrence:** Combines spatial and temporal information using an event-based recurrent mechanism to compute refined spatio-temporal representation.
- Write: Update the associative memory with the refined representation.

Generate positional embedding, π_t for list of event locations

- Generate positional embedding, π_t for list of event locations
- **5** Self-attention to capture their pair-wise interactions, \mathcal{Z}_t

- Generate positional embedding, π_t for list of event locations
 - Self-attention to capture their pair-wise interactions, \mathcal{Z}_{t}
- Retrieve the past hidden states, \mathcal{H}_{t-1} at current positional embedding, π_t

Generate positional embedding, π_t for list of event locations

- Self-attention to capture their pair-wise interactions, \mathcal{Z}_{t}
- Retrieve the past hidden states, \mathcal{H}_{t-1} at current positional embedding, π_t
- $f_{
 m I}$ Updated representation, $\mathcal{X}_{
 m t}$ through a recurrent module using $\mathcal{H}_{
 m t-1}$ and $\mathcal{Z}_{
 m t}$

- Generate positional embedding, π_{t} for list of event locations
- **5** Self-attention to capture their pair-wise interactions, $\mathcal{Z}_{\mathbf{t}}$
- Retrieve the past hidden states, ${\cal H}_{
 m t-1}$ at current positional embedding, $\pi_{
 m t}$
- $m{\eta}$ Updated representation, $\mathcal{X}_{ ext{t}}$ through a recurrent module using $\mathcal{H}_{ ext{t-1}}$ and $\mathcal{Z}_{ ext{t}}$
- \bigcirc Update the associative memory with new representation, \mathcal{X}_{t}

- Generate positional embedding, π_{t} for list of event locations
- 5 Self-attention to capture their pair-wise interactions, $\mathcal{Z}_{\mathbf{t}}$
- $_{f R}$ Retrieve the past hidden states, ${\cal H}_{
 m t-1}$ at current positional embedding, ${\pi}_{
 m t}$
- $f_{
 m III}$ Updated representation, $\mathcal{X}_{
 m t}$ through a recurrent module using $\mathcal{H}_{
 m t-1}$ and $\mathcal{Z}_{
 m t}$
- \bigcirc Update the associative memory with new representation, \mathcal{X}_{t}
- \bigcirc Leverage the updated memory representation, \mathcal{M}_t to optimize the task.

G IGASCALE	allin
R elia ble	
Energy	•
E ffic ien t	
N AN O SY STEM	s LAB

Memory Read Operation

• Query the associative memory with the positional embedding of the current event locations, π_{t}

- **Query** the associative memory with the positional embedding of the current event locations, π_{t}
- Project the past memory representation, \mathcal{M}_{t-1} into *Key* and *Value* space

- **Query** the associative memory with the positional embedding of the current event locations, π_t
- Project the past memory representation, \mathcal{M}_{t-1} into *Key* and *Value* space
- The retrieved state is a weighted sum of past memory representation where the weights are computed through cross-attention from the projected **Query, Key, Value** space.

G IGASCALE	
R elia ble	
E n er g y	
E fficien t	
N AN OSY STEM	IS LAB

Memory Update					
Write Erase					

Memory update occurs through a combination of '*Write*' and '*Erase*' operator.

- Memory update occurs through a combination of '*Write*' and '*Erase*' operator.
- Both '*Write*' and '*Erase*' operator takes past memory representation, M_{t-1} as **query** and refined representation, X_t as **key-value** pair.

- Memory update occurs through a combination of '*Write*' and '*Erase*' operator.
- Both '*Write*' and '*Erase*' operator takes past memory representation, M_{t-1} as **query** and refined representation, X_t as **key-value** pair.
 - " 'Write' operator computes the new memory representation, M'_t

- Memory update occurs through a combination of '*Write*' and '*Erase*' operator.
- Both '*Write*' and '*Erase*' operator takes past memory representation, M_{t-1} as **query** and refined representation, X_t as **key-value** pair.
- '*Write*' operator computes the new memory representation, M'_t
- 'Erase' operator computes the relative update strength, $\sigma_t \in [0,1]$

- Memory update occurs through a combination of 'Write' and 'Erase' operator.
- Both '*Write*' and '*Erase*' operator takes past memory representation, M_{t-1} as **query** and refined representation, X_t as **key-value** pair.
- '*Write*' operator computes the new memory representation, M'_t
- 'Erase' operator computes the relative update strength, $\sigma_t \in [0,1]$
- We use σ_t to partially forget the past information and $(1 \sigma_t)$ to modulate the new information.

- Memory update occurs through a combination of '*Write*' and '*Erase*' operator.
- Both '*Write*' and '*Erase*' operator takes past memory representation, M_{t-1} as **query** and refined representation, X_t as **key-value** pair.
- " '*Write*' operator computes the new memory representation, M'_t
- 'Erase' operator computes the relative update strength, $\sigma_t \in [0,1]$
- We use σ_t to partially forget the past information and $(1 \sigma_t)$ to modulate the new information.
- Finally, we update the memory using a linear combination of past and new information: $M_t = \sigma_t * M_{t-1} + (1 - \sigma_t) * M'_t$

Methods	Representation	Event- N-Caltech101		ech101	N-Cars	
		based?	Accuracy	MFLOPs/ev	Accuracy	MFLOPs/ev
H-First	Spike	\checkmark	0.054	-	0.561	-
Gabor-SNN	Spike	\checkmark	0.284	-	0.789	-
HOTS	Time-Surface	\checkmark	0.21	54	0.624	14
HATS	Time-Surface	\checkmark	0.642	4.3	0.902	0.03
DART	Time-Surface	\checkmark	0.664	-	-	-
EST	Event-Histogram	Х	0.817	4150	0.925	1050
Matrix-LSTM	Event-Histogram	Х	0.843	1580	0.926	1250
YOLE	Voxel-Grid	\checkmark	0.702	3659	0.927	328.16
AsyNet	Voxel-Grid	\checkmark	0.745	202	0.944	21.5
EvS-S	Graph	\checkmark	0.761	11.5	0.931	6.1
AEGNN	Graph	\checkmark	0.668	0.369	0.945	0.03

MFLOPs/ev: total number of FLOPs to process one event on average

Methods	Representation	Event-	N-Calte	ech101	N-	Cars
		based?	Accuracy	MFLOPs/ev	Accuracy	MFLOPs/ev
H-First	Spike	\checkmark	0.054	-	0.561	-
Gabor-SNN	Spike	\checkmark	0.284	-	0.789	-
HOTS	Time-Surface	\checkmark	0.21	54	0.624	14
HATS	Time-Surface	\checkmark	0.642	4.3	0.902	0.03
DART	Time-Surface	\checkmark	0.664	-	-	-
EST	Event-Histogram	Х	0.817	4150	0.925	1050
Matrix-LSTM	Event-Histogram	Х	0.843	1580	0.926	1250
YOLE	Voxel-Grid	\checkmark	0.702	3659	0.927	328.16
AsyNet	Voxel-Grid	\checkmark	0.745	202	0.944	21.5
EvS-S	Graph	\checkmark	0.761	11.5	0.931	6.1
AEGNN	Graph	\checkmark	0.668	0.369	0.945	0.03

MFLOPs/ev: total number of FLOPs to process one event on average

• Frame based methods achieve higher accuracy at the cost of high compute cost, due to their dense processing

Methods	Representation	Event-	N-Calt	ech101	N-	Cars
		based?	Accuracy	MFLOPs/ev	Accuracy	MFLOPs/ev
H-First	Spike	\checkmark	0.054	-	0.561	-
Gabor-SNN	Spike	\checkmark	0.284	-	0.789	-
HOTS	Time-Surface	\checkmark	0.21	54	0.624	14
HATS	Time-Surface	\checkmark	0.642	4.3	0.902	0.03
DART	Time-Surface	\checkmark	0.664	-	-	-
EST	Event-Histogram	Х	0.817	4150	0.925	1050
Matrix-LSTM	Event-Histogram	Х	0.843	1580	0.926	1250
YOLE	Voxel-Grid	\checkmark	0.702	3659	0.927	328.16
AsyNet	Voxel-Grid	\checkmark	0.745	202	0.944	21.5
EvS-S	Graph	\checkmark	0.761	11.5	0.931	6.1
AEGNN	Graph	\checkmark	0.668	0.369	0.945	0.03

MFLOPs/ev: total number of FLOPs to process one event on average

• Frame based methods achieve higher accuracy at the cost of high compute cost, due to their dense processing

Methods	Representation	Event-	N-Calt	ech101	101 N	
		based?	Accuracy	MFLOPs/ev	Accuracy	MFLOPs/ev
H-First	Spike	\checkmark	0.054	-	0.561	-
Gabor-SNN	Spike	\checkmark	0.284	-	0.789	-
HOTS	Time-Surface	\checkmark	0.21	54	0.624	14
HATS	Time-Surface	\checkmark	0.642	4.3	0.902	0.03
DART	Time-Surface	\checkmark	0.664	-	-	-
EST	Event-Histogram	Х	0.817	4150	0.925	1050
Matrix-LSTM	Event-Histogram	Х	0.843	1580	0.926	1250
YOLE	Voxel-Grid	\checkmark	0.702	3659	0.927	328.16
AsyNet	Voxel-Grid	\checkmark	0.745	202	0.944	21.5
EvS-S	Graph	\checkmark	0.761	11.5	0.931	6.1
AEGNN	Graph	\checkmark	0.668	0.369	0.945	0.03

MFLOPs/ev: total number of FLOPs to process one event on average

- · Frame based methods achieve higher accuracy at the cost of high compute cost, due to their dense processing
- Asynchronous graph-based methods have the high compute efficiency but their performance is limited by their capacity of storing and processing past events on the graph

Mathada	Representation	Event- N-Caltech101		N-Cars		
Methods		based?	Accuracy	MFLOPs/ev	Accuracy	MFLOPs/ev
H-First	Spike	\checkmark	0.054	-	0.561	-
Gabor-SNN	Spike	\checkmark	0.284	-	0.789	-
HOTS	Time-Surface	\checkmark	0.21	54	0.624	14
HATS	Time-Surface	\checkmark	0.642	4.3	0.902	0.03
DART	Time-Surface	\checkmark	0.664	-	-	-
EST	Event-Histogram	Х	0.817	4150	0.925	1050
Matrix-LSTM	Event-Histogram	Х	0.843	1580	0.926	1250
YOLE	Voxel-Grid	\checkmark	0.702	3659	0.927	328.16
AsyNet	Voxel-Grid	\checkmark	0.745	202	0.944	21.5
EvS-S	Graph	\checkmark	0.761	11.5	0.931	6.1
AEGNN	Graph	\checkmark	0.668	0.369	0.945	0.03
EventFormer	Unstructured Set	\checkmark	0.848	0.048	0.943	0.013

MFLOPs/ev: total number of FLOPs to process one event on average

- · Frame based methods achieve higher accuracy at the cost of high compute cost, due to their dense processing
- Asynchronous graph-based methods have the high compute efficiency but their performance is limited by their capacity of storing and processing past events on the graph
- EventFormer enjoys both the high compute efficiency (storing and processing past events in a compressed latent space) and high accuracy (rich spatiotemporal features)

EventFormer: Quantitative Performance

EventFormer: Qualitative Evaluation

- We visualize the associative memory states for two different class samples from N-Caltech101 dataset.
- Although the memory states at same at the beginning (initial states), it quickly evolves into different patterns as we get more and more events.

*Only for visualization purpose

EventFormer: Qualitative Evaluation

Temporal evolution of the Associative Memory States:

- Memory states clusters towards the same location in the absence of any events (time step = 0) due to the same initial states for all the classes
- With the evolution of time, the associative memory states start to form more distinguishable clusters
- More sparable class boundaries shows how our memory representation capture more discriminative features as it process more events

Time progression

EventFormer: Quantitative Performance

- EventFormer is capable of continuous class prediction thanks to its recurrent memory processing
- It takes ~1000 events only to reach reasonable class-confidence probability score
- Associative memory states update accordingly when it observes sample from difference class
- The memory learns to preserve useful information from its previous input, resulting in faster update

Summary

We present EventFormer:

- A memory-augmented spatiotemporal representation learning framework for event-based perception
- Processes set-structured data and learns to perform spatio-temporal correlation in the latent memory space
- It achieves superior performance on the existing event-camera object classification benchmarks with massive computational efficiency gains

Summary

We present EventFormer:

- A memory-augmented spatiotemporal representation learning framework for event-based perception
- Processes set-structured data and learns to perform spatio-temporal correlation in the latent memory space
- It achieves superior performance on the existing event-camera object classification benchmarks with massive computational efficiency gains

Future works:

 Possible adaption of EventFormer on more challenging spatiotemporal tasks including event-based object detection, motion segmentation, optical flow estimation, etc.