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Event-based Camera: An Overview

Video source: https://youtu.be/LauQ6LWTkxM?t=30

Event camera records per-pixel 
brightness change asynchronously

Advantage over frame-based camera:
• High dynamic range (>120db)
• Ultra-low latency 
• High temporal resolution (~15 µs)
• Low power consumption (~10 mW)

https://youtu.be/LauQ6LWTkxM?t=30
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Past events

Event-based
Perception

Past perceptions

New event 

New perception 

Key Algorithm Challenges:
• Spatiotemporal encoding: Encoding of 

events to a latent-representation that can 
correlate across both space and time

• Efficient update: Update latent 
representation only ‘when’ and ‘where’ 
there is an event

• Task specific decoding: Decode the 
latent representation to target task output.

https://youtu.be/LauQ6LWTkxM?t=30
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Existing Works

Representation Processing Method Limitation

Dense processing, discards 
the sparse nature of the 
events and wasteful of 

computations

Requires storing the past 
events on the space-time 
graph and re-processing 

them

Requires storing and 
processing the past events 
to correlate with new events

1. Gehrig et al., End-to-end Representation Learning for Event-based Camera, ICCV’19
2. Li et al., Graph-based Asynchronous Event Processing for Rapid Object Recognition. ICCV’21
3. Wang et al., Space-time Event Cloud for Hand Gesture Recognition, WACV’19

Event-aggregated 
Frames

Spatiotemporal
Event Graph

Events as
Point Clouds

Temporal aggregation of 
the events maps them 
into discrete, dense 
frames and use CNN1

Maps events into a 
spatiotemporal graph 
and apply graph neural 
networks (GNN) 2

Treats events as 
space-time point-cloud 
and applies point-
based processing3

CNN

GNN

PointNet
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Proposed Method: Overview

Past events

Attention
Memory

Rec

Unstructured Set

EventFormer

Write

Read

Given a list of events at time t, EventFormer:
• Refine : Models higher-order interaction 

among the events (space).
• Read: Retrieves past representations at 

current event locations (time).
• Recurrence: Combines spatial and temporal 

information using an event-based recurrent 
mechanism to compute refined spatio-
temporal representation.

• Write: Update the associative memory with 
the refined representation.
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Proposed Method: Details
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Proposed Method: Details

Generate positional embedding,      for list of event locations1

List of
Events

Positional 
Encoder

1
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Proposed Method: Details

Generate positional embedding,      for list of event locations1

Pairwise
Interaction

2

List of
Events

Positional 
Encoder

1

1 Self-attention to capture their pair-wise interactions, 2
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Proposed Method: Details

Generate positional embedding,      for list of event locations1

Pairwise
Interaction

2

List of
Events

Positional 
Encoder

1

Retrieve
Past States

Associative
MemoryPositional 

Embedding

3

1 Self-attention to capture their pair-wise interactions, 2
Retrieve the past hidden states,            at current positional embedding,       3
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Proposed Method: Details

Generate positional embedding,      for list of event locations1

Pairwise
Interaction

2

List of
Events

Positional 
Encoder

1

Retrieve
Past States

Associative
MemoryPositional 

Embedding

3

Recurrent 
Module

4

1 Self-attention to capture their pair-wise interactions, 2
Retrieve the past hidden states,            at current positional embedding,       3
Updated representation,      through a recurrent module using            and  4
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Proposed Method: Details

Generate positional embedding,      for list of event locations1

Pairwise
Interaction

2

List of
Events

Positional 
Encoder

1

Retrieve
Past States

Associative
MemoryPositional 

Embedding

3

Recurrent 
Module

4

Update
New States

5

1 Self-attention to capture their pair-wise interactions, 2
Retrieve the past hidden states,            at current positional embedding,       3
Updated representation,      through a recurrent module using            and  4
Update the associative memory with new representation,      5
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Proposed Method: Details

Generate positional embedding,      for list of event locations1

Pairwise
Interaction

2

List of
Events

Positional 
Encoder

1

Retrieve
Past States

Associative
MemoryPositional 

Embedding

3

Recurrent 
Module

4

Update
New States

5
Classification

Head

6

1 Self-attention to capture their pair-wise interactions, 2
Retrieve the past hidden states,            at current positional embedding,       3
Updated representation,      through a recurrent module using            and  4
Update the associative memory with new representation,      5
Leverage the updated memory representation,        to optimize the task.6
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Memory Read Operation

EventFormer: Memory Read Operation
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Memory Read Operation

• Query the associative memory with the positional embedding of the current event locations,

EventFormer: Memory Read Operation
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Memory Read Operation

• Query the associative memory with the positional embedding of the current event locations,

EventFormer: Memory Read Operation

• Project the past memory representation,             into Key and Value space
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Memory Read Operation

• Query the associative memory with the positional embedding of the current event locations,

EventFormer: Memory Read Operation

• Project the past memory representation,             into Key and Value space
• The retrieved state is a weighted sum of past memory representation where the weights are 

computed through cross-attention from the projected Query, Key, Value space.  

Ø
query Q

gkey KT

σ
value V

×
attention weight 

×
recalibrated value

Operator Building Block
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Memory Update

EventFormer: Memory Update Operation
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Memory Update

EventFormer: Memory Update Operation

• Memory update occurs through a combination of ‘Write’ and 
‘Erase’ operator.



G IGASC ALE

RELIABLE

EN ERGY
EFFIC IEN T
N AN OSY STEM S LAB

G IGASC ALE

RELIABLE

EN ERGY
EFFIC IEN T
N AN OSY STEM S LAB

𝑀!"#
• Both ‘Write’ and ‘Erase’ operator takes past memory 

representation,          as query and refined representation,       
as key-value pair.

𝑋!

9

Memory Update

EventFormer: Memory Update Operation

• Memory update occurs through a combination of ‘Write’ and 
‘Erase’ operator.
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• ‘Write’ operator computes the new memory representation,     𝑀′!

𝑀!"#
• Both ‘Write’ and ‘Erase’ operator takes past memory 

representation,          as query and refined representation,       
as key-value pair.

𝑋!
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Memory Update

EventFormer: Memory Update Operation

• Memory update occurs through a combination of ‘Write’ and 
‘Erase’ operator.
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Memory Update

EventFormer: Memory Update Operation

• Memory update occurs through a combination of ‘Write’ and 
‘Erase’ operator.

• ‘Erase’ operator computes the relative update strength,       𝜎! ∈ [0,1]
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• Both ‘Write’ and ‘Erase’ operator takes past memory 

representation,          as query and refined representation,       
as key-value pair.
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Memory Update

EventFormer: Memory Update Operation

• Memory update occurs through a combination of ‘Write’ and 
‘Erase’ operator.

• ‘Erase’ operator computes the relative update strength,       𝜎! ∈ [0,1]

• We use       to partially forget the past information and                
to modulate the new information.

𝜎! (1 − 𝜎!)
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• Finally, we update the memory using a linear combination of past 
and new information: 𝑀! = 𝜎! ∗ 𝑀!"# + 1 − 𝜎! ∗ 𝑀!

$

• ‘Write’ operator computes the new memory representation,     𝑀′!

𝑀!"#
• Both ‘Write’ and ‘Erase’ operator takes past memory 

representation,          as query and refined representation,       
as key-value pair.

𝑋!
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Memory Update

EventFormer: Memory Update Operation

• Memory update occurs through a combination of ‘Write’ and 
‘Erase’ operator.

• ‘Erase’ operator computes the relative update strength,       𝜎! ∈ [0,1]

• We use       to partially forget the past information and                
to modulate the new information.

𝜎! (1 − 𝜎!)
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Methods Representation Event-
based?

N-Caltech101 N-Cars

Accuracy MFLOPs/ev Accuracy MFLOPs/ev
H-First Spike ✓ 0.054 - 0.561 -

Gabor-SNN Spike ✓ 0.284 - 0.789 -
HOTS Time-Surface ✓ 0.21 54 0.624 14
HATS Time-Surface ✓ 0.642 4.3 0.902 0.03
DART Time-Surface ✓ 0.664 - - -
EST Event-Histogram X 0.817 4150 0.925 1050

Matrix-LSTM Event-Histogram X 0.843 1580 0.926 1250
YOLE Voxel-Grid ✓ 0.702 3659 0.927 328.16
AsyNet Voxel-Grid ✓ 0.745 202 0.944 21.5
EvS-S Graph ✓ 0.761 11.5 0.931 6.1

AEGNN Graph ✓ 0.668 0.369 0.945 0.03
EventFormer Unstructured Set ✓ 0.848 0.048 0.943 0.013

EventFormer: Quantitative Performance

We evaluate EventFormer on event-based classification task on N-Caltech101 and N-Cars dataset

MFLOPs/ev:
total number of 
FLOPs to process 
one event on 
average
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• Frame based methods achieve higher accuracy at the cost of high compute cost, due to their dense processing
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• Asynchronous graph-based methods have the high compute efficiency but their performance is limited by their 
capacity of storing and processing past events on the graph
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We evaluate EventFormer on event-based classification task on N-Caltech101 and N-Cars dataset

MFLOPs/ev:
total number of 
FLOPs to process 
one event on 
average

• Frame based methods achieve higher accuracy at the cost of high compute cost, due to their dense processing

• Asynchronous graph-based methods have the high compute efficiency but their performance is limited by their 
capacity of storing and processing past events on the graph

• EventFormer enjoys both the high compute efficiency (storing and processing past events in a compressed 
latent space) and high accuracy (rich spatiotemporal features)
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EventFormer: Qualitative Evaluation
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• We visualize the associative memory states for two different class samples from N-Caltech101 dataset.
• Although the memory states at same at the beginning (initial states), it quickly evolves into different 

patterns as we get more and more events.

*Only for visualization purpose
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Temporal evolution of the Associative Memory States:

13

EventFormer: Qualitative Evaluation

• 2D tSNE visualization of the memory states (32x32) for 10-different class samples from N-Caltech101 
dataset

• Memory states clusters towards the same location in the absence of any events (time step = 0) due to 
the same initial states for all the classes

• With the evolution of time, the associative memory states start to form more distinguishable clusters
• More sparable class boundaries shows how our memory representation capture more discriminative 

features as it process more events

Time progression

time step = 0 time step = 1 time step = 2 time step = N
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EventFormer: Quantitative Performance
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• EventFormer is capable of continuous class prediction thanks to its recurrent memory processing
• It takes ~1000 events only to reach reasonable class-confidence probability score
• Associative memory states update accordingly when it observes sample from difference class
• The memory learns to preserve useful information from its previous input, resulting in faster update
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Summary
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We present EventFormer:

• A memory-augmented spatiotemporal representation learning framework for 
event-based perception

• Processes set-structured data and learns to perform spatio-temporal 
correlation in the latent memory space

• It achieves superior performance on the existing event-camera object 
classification benchmarks with massive computational efficiency gains
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Summary

15

We present EventFormer:

• A memory-augmented spatiotemporal representation learning framework for 
event-based perception

• Processes set-structured data and learns to perform spatio-temporal 
correlation in the latent memory space

• It achieves superior performance on the existing event-camera object 
classification benchmarks with massive computational efficiency gains

Future works:

• Possible adaption of EventFormer on more challenging spatiotemporal tasks 
including event-based object detection, motion segmentation, optical flow 
estimation, etc. 


