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Video source: https://youtu.be/LauQ6LWTkxM?t=30

Event camera records per-pixel
brightness change asynchronously

Advantage over frame-based camera:

* High dynamic range (>120db)

* Ultra-low latency

» High temporal resolution (~15 us)
* Low power consumption (~10 mW)


https://youtu.be/LauQ6LWTkxM?t=30
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Key Algorithm Challenges:
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Representation

Processing Method

Limitation

Event-aggregated

Temporal aggregation of
the events maps them
into discrete, dense

Dense processing, discards
the sparse nature of the
events and wasteful of

1 :
Erames CNN frames and use CNN computations
8 ?’f fjgo? [ mmn Maps events into a Requires storing the past
iy el |mmm spatiotemporal graph events on the space-time
o L h and re-processin
) I and apply graph neural grap P 9
Spatiotemporal BT networks (GNN) 2 them
Event Graph GNN
oINS\ T Treats events as Requires storing and
5 | space-time point-cloud processing the past events
NN and applies point- to correlate with new events
Events as : based processing?
Point Clouds PointNet

1. Gehrig et al., End-to-end Representation Learning for Event-based Camera, ICCV’'19

2. Li et al., Graph-based Asynchronous Event Processing for Rapid Object Recognition. ICCV’21

3. Wang et al., Space-time Event Cloud for Hand Gesture Recognition, WACV’19
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Given a list of events at time t, EventFormer:

—————————————————————————————————————————————

EventFormer « Refine : Models higher-order interaction

among the events (space).

Read: Retrieves past representations at
current event locations (time).

Past events
eecoco eee | Unstructured Set

________________ ‘..

[ Attention]

Recurrence: Combines spatial and temporal
information using an event-based recurrent
mechanism to compute refined spatio-
temporal representation.

o -
Emmm
Emmm
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"""""""""""""""""""""""""""""" « Write: Update the associative memory with
the refined representation.
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Positional
Encoder

@ Generate positional embedding, 7+ for list of event locations
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2,

>[ Refine ]Z)

Pairwise
Interaction

€ Self-attention to capture their pair-wise interactions, Z,
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Q Retrieve Associative
Positional Past States Memory

Embedding M,
M)
Ly-

lﬂt_l

@ Reitrieve the past hidden states, #¢_1 at current positional embedding, 7T+



G 1GASCALE
Proposed Method: Details Bvever
Erricient

N anosystems LAB

Associative
Memory

(M

Recurrent
Module

# Updated representation, A; through a recurrent module using 1t—1 and <+t
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Associative
Memory

(M ]
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PYEd Write]
X} [
Update
New States

® Upaate the associative memory with new representation, ;.
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Classification
Head

@ Leverage the updated memory representation, M, 10 oplimize the 1ask.
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Memory Read Operation

A

Query

A

3

Positional
Embedding

* Query the associative memory with the positional embedding of the current event locations, 7T ¢
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Memory Read Operation

A A

Query Key, Value
| )
T t ( )
( )
Positional Past Memory

Embedding Representation (M;_1)

* Query the associative memory with the positional embedding of the current event locations, 7T ¢

* Project the past memory representation, Mi—1into Key and Value space
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Memory Read Operation g Operator Building Block

Read Operator ]
[ T D 'f \ E attention weight
Query Key, Value T
A A \ ey, [o1S
( 118
( )
7Tt ( ) \\ i“e,@_") recalibrated value
Positional Past Memory |
Embedding Representation (M;_1)

Query the associative memory with the positional embedding of the current event locations, 7T ¢

Project the past memory representation, Mi—1into Key and Value space

The retrieved state is a weighted sum of past memory representation where the weights are
computed through cross-attention from the projected Query, Key, Value space.
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Memory Update

Write Erase
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» Memory update occurs through a combination of ‘Write’ and

‘Erase’ operator.

Write Erase
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M Updat
« Memory update occurs through a combination of ‘Write’ and

‘Erase’ operator.

« Both ‘Write’ and ‘Erase’ operator takes past memory
representation, M;_1as query and refined representation, X;

as key-value pair.

Write Erase

Bi=

Refined Past Memory
Representation Representation (M;_1)
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‘Erase’ operator.

« Both ‘Write’ and ‘Erase’ operator takes past memory
representation, M;_1as query and refined representation, X;
as key-value pair.

A « ‘Write’ operator computes the new memory representation, M 't

Write Erase

B=

Refined Past Memory
Representation Representation (M;_1)
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» Memory update occurs through a combination of ‘Write’ and

‘Erase’ operator.

« Both ‘Write’ and ‘Erase’ operator takes past memory
representation, M;_1as query and refined representation, X;
as key-value pair.

A ? « ‘Write’ operator computes the new memory representation, M 't

Write Erase
TI T TQ - ‘Erase’ operator computes the relative update strength, o, € [0,1]
Key, Value Query Key, Valu uery

Bi=

Refined Past Memory
Representation Representation (M;_1)
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Memory Update

Memory update occurs through a combination of ‘Write’ and
‘Erase’ operator.

« Both ‘Write’ and ‘Erase’ operator takes past memory
representation, M;_1as query and refined representation, X;
as key-value pair.

A ? « ‘Write’ operator computes the new memory representation, M 't

Write Erase
TI T TQ - ‘Erase’ operator computes the relative update strength, o, € [0,1]
Key, Value Query Key, Valu uery

« We use o; to partially forget the past information and (1 — ;)
. . to modulate the new information.
B=

Refined Past Memory
Representation Representation (M;_1)
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Memory Update D VAT
Updated Momory (At « Memory update occurs through a combination of ‘Write’ and

( ) ‘Erase’ operator.
| ]

: : « Both ‘Write’ and ‘Erase’ operator takes past memory
(1 — 0’) X M,t T o X Mi_4

-« representation, M;_1as query and refined representation, X;
as key-value pair.

)
H -
M,t; - ‘Write’ operator computes the new memory representation, M';

Write Erase
TI T TQ - ‘Erase’ operator computes the relative update strength, o, € [0,1]
Key, Value Query Key, Valu uery

« We use o; to partially forget the past information and (1 — ;)
to modulate the new information.

| ]
[ Xt ] : Hl- Finally, we update the memory using a linear combination of past

Refined Past Memory and new InfOr'matIOn Mt - O-t * Mt_l + (1 - O-t) * M{-

Representation Representation (M;_1)
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We evaluate EventFormer on event-based classification task on N-Caltech101 and N-Cars dataset

Event- N-Caltech101 N-Cars
Methods Representation >
based? | Accuracy | MFLOPs/ev | Accuracy | MFLOPs/ev
H-First Spike v 0.054 - 0.561 -
Gabor-SNN Spike v 0.284 - 0.789 -
HOTS Time-Surface v 0.21 54 0.624 14
HATS Time-Surface v 0.642 4.3 0.902 0.03
DART Time-Surface v 0.664 - - -
EST Event-Histogram X 0.817 4150 0.925 1050
Matrix-LSTM | Event-Histogram X 0.843 1580 0.926 1250
YOLE Voxel-Grid v 0.702 3659 0.927 328.16
AsyNet Voxel-Grid v 0.745 202 0.944 21.5
EvS-S Graph v 0.761 11.5 0.931 6.1
AEGNN Graph v 0.668 0.369 0.945 0.03

MFLOPs/ev:
total number of

FLOPs to process

one event on
average

10
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We evaluate EventFormer on event-based classification task on N-Caltech101 and N-Cars dataset

Method R tati Event- N-Caltech101 N-Cars
resentation )
shocs SPrEsemation | based? Accuracy | MFLOPs/ev | Accuracy | MFLOPs/ev MFLOPs/ev:
H-First Spike 7 0.054 ] 0.561 - total number of
Gabor-SNN Spike J 0.284 i 0.789 - FLOPs to process
HOTS Time-Surface v 0.21 54 0.624 14 one event on
HATS Time-Surface v 0.642 4.3 0.902 0.03 average
DART Time-Surface v 0.664 - - -
EST Event-Histogram X 0.817 4150 0.925 1050
Matrix-LSTM [ Event-Histogram X 0.843 1580 0.926 1250
YOLE Voxel-Grid v 0.702 3659 0.927 328.16
AsyNet Voxel-Grid v 0.745 202 0.944 21.5
EvS-S Graph v 0.761 11.5 0.931 6.1
AEGNN Graph v 0.668 0.369 0.945 0.03

* Frame based methods achieve higher accuracy at the cost of high compute cost, due to their dense processing

10
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We evaluate EventFormer on event-based classification task on N-Caltech101 and N-Cars dataset

Method R tati Event- N-Caltech101 N-Cars
ethods epresentation .
P based? | Accuracy | MFLOPs/ev | Accuracy | MFLOPs/ev MFLOPs/ev:
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* Frame based methods achieve higher accuracy at the cost of high compute cost, due to their dense processing

» Asynchronous graph-based methods have the high compute efficiency but their performance is limited by their
capacity of storing and processing past events on the graph
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We evaluate EventFormer on event-based classification task on N-Caltech101 and N-Cars dataset

Method R tati Event- N-Caltech101 N-Cars
ethods epresentation .
P based? | Accuracy | MFLOPs/ev | Accuracy | MFLOPs/ev MFLOPs/ev:
H-First Spike 7 0.054 ] 0.561 - total number of
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EvS-S Graph v 0.761 11.5 0.931 6.1
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EventFormer | Unstructured Set v 0.848 0.048 0.943 0.013

Frame based methods achieve higher accuracy at the cost of high compute cost, due to their dense processing

Asynchronous graph-based methods have the high compute efficiency but their performance is limited by their
capacity of storing and processing past events on the graph

EventFormer enjoys both the high compute efficiency (storing and processing past events in a compressed
latent space) and high accuracy (rich spatiotemporal features)

10
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We visualize the associative memory states for two different class samples from N-Caltech101 dataset.
Although the memory states at same at the beginning (initial states), it quickly evolves into different

patterns as we get more and more events.

*Only for visualization purpose
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Temporal evolution of the Associative Memory States:

tSNE 2

Time progression
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« 2D tSNE visualization of the memory states (32x32) for 10-different class samples from N-Caltech101

dataset

* Memory states clusters towards the same location in the absence of any events (time step = 0) due to

the same initial states for all the classes

» With the evolution of time, the associative memory states start to form more distinguishable clusters
* More sparable class boundaries shows how our memory representation capture more discriminative

features as it process more events

13
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Event-aggregated frames

(only for visualization

purpose)
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Number of cumulative events

EventFormer is capable of continuous class prediction thanks to its recurrent memory processing
It takes ~1000 events only to reach reasonable class-confidence probability score
Associative memory states update accordingly when it observes sample from difference class
The memory learns to preserve useful information from its previous input, resulting in faster update
14
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We present EventFormer:

A memory-augmented spatiotemporal representation learning framework for
event-based perception

* Processes set-structured data and learns to perform spatio-temporal
correlation in the latent memory space

» It achieves superior performance on the existing event-camera object
classification benchmarks with massive computational efficiency gains

15
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We present EventFormer:

A memory-augmented spatiotemporal representation learning framework for
event-based perception

* Processes set-structured data and learns to perform spatio-temporal
correlation in the latent memory space

» It achieves superior performance on the existing event-camera object
classification benchmarks with massive computational efficiency gains

Future works:

» Possible adaption of EventFormer on more challenging spatiotemporal tasks
including event-based object detection, motion segmentation, optical flow
estimation, etc.
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