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Active Learning (simplified)

❑ Unlabeled data pool

❑ Annotate ground truth labels by human

❑ Train neural network with labeled dataset

❑ Select acquiring data points from unlabeled data pool
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Active Learning (simplified)

❑ Unlabeled data pool

❑ Annotate ground truth labels by human

❑ Train neural network with labeled dataset

✓ Select acquiring data points from unlabeled data pool
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✓ Maximize information gain

✓ Diversify the selection✓ Minimize computational cost

o BALD – Mutual Information
o Entropy
o MeanSD
o Variational Ratio
o …

[1] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data. In International Conference on Machine Learning, pp. 1183–1192. PMLR, 2017.

[2] Claude E Shannon. A mathematical theory of communication. The Bell system technical journal, 27(3):379–423, 1948.

[3] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical models. Journal of artificial intelligence research, 4:129–145, 1996.
[4] L.C. Freeman. Elementary Applied Statistics: For Students in Behavioral Science. For Students in Behavioral Science. Wiley, 1965.
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✓ Maximize information gain

✓ Diversify the selection✓ Minimize computational cost

o BADGE
o BatchBALD
o CoreSet
o …

[1] Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep batch active learning by diverse, uncertain gradient lower bounds. International Conference 

on Learning Representations, 2020.

[2] Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch acquisition for deep bayesian active learning. Advances in Neural Information Processing Systems 

2019.
[3] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach. In International Conference on Learning Representations, 2018.
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✓ Maximize information gain

✓ Diversify the selection✓ Minimize computational cost

o PowerBALD

[1] Sebastian Farquhar, Yarin Gal, and Tom Rainforth. On statistical bias in active learning: How and when to fix it. International Conference on Learning Representations, 2021.
[2] Andreas Kirsch, Sebastian Farquhar, and Yarin Gal. A simple baseline for batch active learning with stochastic acquisition functions. arXiv preprint arXiv:2106.12059, 2021.
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BALD

PowerBALD

Entropy
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✓ Maximize information gain

✓ Diversify the selection✓ Minimize computational cost

BALD Entropy

BalEntAcq



Bayesian Neural Networks
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✓ Apply dropouts
✓ Laplace Approximation
✓ …

[1] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: representing model uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.

PMLR, 2016

[2] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes overconfidence in relu networks. In International Conference on Machine Learning, pp. 5436–

5446. PMLR, 2020

[3] Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural 
Information Processing Systems, 34, 2021.
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✓ Apply dropouts
✓ Laplace Approximation
✓ …

[1] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: representing model uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.

PMLR, 2016

[2] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes overconfidence in relu networks. In International Conference on Machine Learning, pp. 5436–

5446. PMLR, 2020

[3] Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural 
Information Processing Systems, 34, 2021.
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✓ Apply dropouts

softmax
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✓ Apply dropouts

softmax

✓ Beta distribution for each marginal

[1] https://en.wikipedia.org/wiki/Beta_distribution
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✓ Apply dropouts

softmax

✓ Beta distribution for each marginal

[1] https://en.wikipedia.org/wiki/Beta_distribution
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✓ MNIST
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✓ MNIST

൝
𝑃𝑖 ∼ Beta 𝛼𝑖 , 𝛽𝑖 ,

𝑃𝑖
+ ∼ Beta 𝛼𝑖 + 1, 𝛽𝑖

Match mean and 
variance
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−∞ ≤ 𝐁𝐚𝐥𝐄𝐧𝐭 𝐱 :=
∑E𝑃𝑖ℎ 𝑃𝑖

+ +𝐻 𝑌

𝐻 𝑌 + log 2
≤ 1, 𝑌 = Class Label

𝐻 𝑌 ≥ 0∑E𝑃𝑖ℎ 𝑃𝑖
+ ≤ 0

✓ Discrete Shannon entropy✓ Continuous differential entropy

✓ Model confidence ✓ Label uncertainty
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𝐁𝐚𝐥𝐄𝐧𝐭 𝐱

=
∑

𝛼𝑖
𝛼𝑖 + 𝛽𝑖

log𝐵 𝛼𝑖 + 1, 𝛽𝑖 − 𝛼𝑖Ψ 𝛼𝑖 + 1 − 𝛽𝑖 − 1 Ψ 𝛽𝑖 − 𝛼𝑖 + 𝛽𝑖 − 1 Ψ 𝛼𝑖 + 𝛽𝑖 + 1 − log
𝛼𝑖

𝛼𝑖 + 𝛽𝑖

−∑
𝛼𝑖

𝛼𝑖 + 𝛽𝑖
log

𝛼𝑖
𝛼𝑖 + 𝛽𝑖

+ log 2
,

where 𝐵 𝑎, 𝑏 =
Γ 𝑎 Γ 𝑏

Γ 𝑎+𝑏
.

FYI,
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Balanced Entropy Learning Principle

𝐁𝐚𝐥𝐄𝐧𝐭 𝐱 = 0

𝐁𝐚𝐥𝐄𝐧𝐭 𝐱 = 0

𝐁𝐚𝐥𝐄𝐧𝐭 𝐱 ≥ 0

Decision Boundary
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Balanced Entropy Learning Principle

[1] Yinglun Zhu and Robert Nowak. Efficient active learning with abstention. Advances in Neural Information Processing Systems, 2022b.17
[2] Yinglun Zhu and Robert Nowak. Active learning with neural networks: Insights from nonparametric statistics. Advances in Neural Information Processing Systems, 2022a.

𝐁𝐚𝐥𝐄𝐧𝐭 𝐱 = 0

𝐁𝐚𝐥𝐄𝐧𝐭 𝐱 ≥ 0

Decision Boundary

𝐁𝐚𝐥𝐄𝐧𝐭 𝐱 = 0
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✓ Balanced Entropy provides a novel way to quantify the uncertainty in active learning
✓ Not maximal information gain, but sufficient to achieve superior performance than others
✓ Linear computational time complexity
✓ Diversified selection

✓ Balanced Entropy comes from the joint entropy formulation between the model and the label
✓ It quantifies the estimation error probability after acquisition under entropy precision

✓ Look forward to having further applications beyond active learning


