

Learnable Behavior Control: Breaking Atari Human World Records via Sample-Efficient Behavior Selection

Jiajun Fan, Yuzheng Zhuang, Yuecheng Liu, Jianye HAO, Bin Wang, Jiangcheng Zhu, Hao Wang, Shu-Tao Xia

Presenter: Jiajun Fan

Email: fanjj21@mails.tsinghua.edu.cn

Introduction

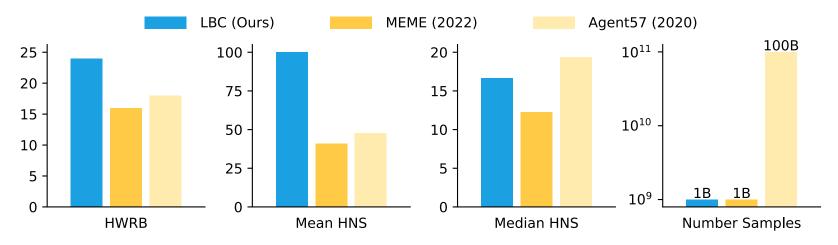


Figure 1: Performance on the Atari.

- 1. The efficacy of reinforcement learning (RL) algorithms in practical applications is heavily reliant on their sampling efficiency.
- 2. Achieving optimal performance with limited data samples is a challenging task, and only a handful of algorithms can achieve both high sample efficiency and superior final performance.
- 3. While some RL models have demonstrated remarkable results in specific tasks, the claim of surpassing human-level performance is often exaggerated and misleading. Despite recent advancements in RL, the strongest algorithms still fall short of outperforming human world records on a multitude of tasks.

Introduction

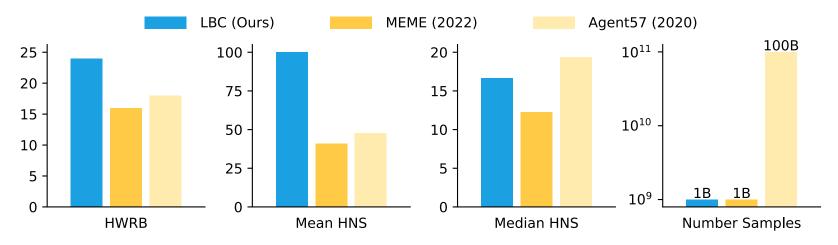


Figure 1: Performance on the Atari.

- 1. Reduce the amount of **training data** by current SOTA reinforcement learning algorithms by more than **20-100 times**.
- 2. In the case of reduced data sample size, **maintain or even surpass** SOTA performance, and even surpasses the original performance.
- 3. Break all human world records and obtain real super-human agents in Atari.

Why do we need behavior control?

Better data facilitate better performance and better sample efficiency.

How to optimize the data distribution in RL?

Behavior Policy!

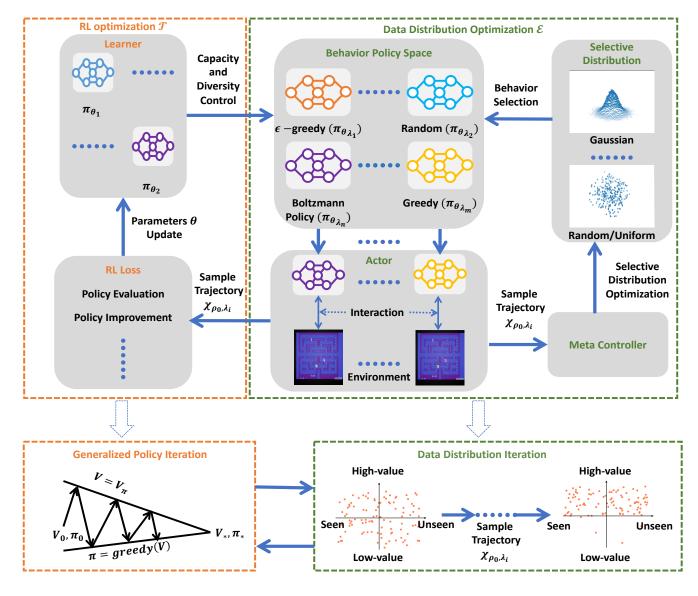


Figure 2: Data Distribution Optimization [1]

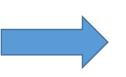
[1] Fan, Jiajun, and Changnan Xiao. "Generalized Data Distribution Iteration." International Conference on Machine Learning. PMLR, 2022.

Why do we need behavior control?

Theorem 1 (First-Order Optimization with Superior Target). Under assumptions (1) (2) (3), we have $\mathcal{L}_{\mathcal{T}}(\mathcal{P}_{\Lambda}^{(t+1)}, \theta^{(t+1)}) = \mathbf{E}_{\lambda \sim \mathcal{P}_{\Lambda}^{(t+1)}}[\mathcal{L}_{\mathcal{T}}(\lambda, \theta_{\lambda}^{(t+1)})] \geq \mathbf{E}_{\lambda \sim \mathcal{P}_{\Lambda}^{(t)}}[\mathcal{L}_{\mathcal{T}}(\lambda, \theta_{\lambda}^{(t+1)})] = \mathcal{L}_{\mathcal{T}}(\mathcal{P}_{\Lambda}^{(t)}, \theta^{(t+1)}).$

Theorem 2 (Second-Order Optimization with Superior Improvement). *Under assumptions* (1) (2) (4), we have $\mathbf{E}_{\lambda \sim \mathcal{P}_{\Lambda}^{(t+1)}}[G^{\eta}\mathcal{L}_{\mathcal{T}}(\lambda, \theta_{\lambda}^{(t+1)})] \geq \mathbf{E}_{\lambda \sim \mathcal{P}_{\Lambda}^{(t)}}[G^{\eta}\mathcal{L}_{\mathcal{T}}(\lambda, \theta_{\lambda}^{(t+1)})]$, more specifically,

$$\begin{split} & \boldsymbol{E}_{\lambda \sim \mathcal{P}_{\Lambda}^{(t+1)}}[\mathcal{L}_{\mathcal{T}}(\lambda, \boldsymbol{\theta}_{\lambda}^{(t+1), \eta}) - \mathcal{L}_{\mathcal{T}}(\lambda, \boldsymbol{\theta}_{\lambda}^{(t+1)})] \\ & \geq \boldsymbol{E}_{\lambda \sim \mathcal{P}_{\Lambda}^{(t)}}[\mathcal{L}_{\mathcal{T}}(\lambda, \boldsymbol{\theta}_{\lambda}^{(t+1), \eta}) - \mathcal{L}_{\mathcal{T}}(\lambda, \boldsymbol{\theta}_{\lambda}^{(t+1)})] \end{split}$$



If we use better data for training, can we obtain better performance?

Yes!

Better Data facilitate Better RL training! But How? -> LBC

Behavior Control Formulation

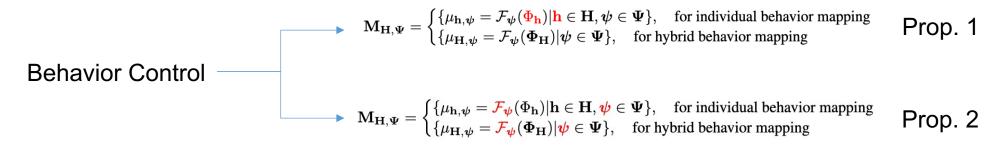
Definition 3.1 (Behavior Space Construction). Considering the RL problem that behaviors μ are generated from some policy model(s). We can acquire a family of realizable behaviors by applying a family of behavior mappings \mathcal{F}_{Ψ} to these policy model(s). Define the set that contains all of these realizable behaviors as the behavior space, which can be formulated as:

$$\mathbf{M}_{\mathbf{H},\mathbf{\Psi}} = \begin{cases} \{\mu_{\mathbf{h},\mathbf{\psi}} = \mathcal{F}_{\mathbf{\psi}}(\Phi_{\mathbf{h}}) | \mathbf{h} \in \mathbf{H}, \mathbf{\psi} \in \mathbf{\Psi} \}, & \text{for individual behavior mapping} \\ \{\mu_{\mathbf{H},\mathbf{\psi}} = \mathcal{F}_{\mathbf{\psi}}(\Phi_{\mathbf{H}}) | \mathbf{\psi} \in \mathbf{\Psi} \}, & \text{for hybrid behavior mapping} \end{cases}$$
(4)

Definition 3.2 (Behavior Selection). Behavior selection can be formulated as finding a optimal selection distribution $\mathcal{P}^*_{\mathbf{M}_{\Theta,\mathbf{H},\Psi}}$ to select the behaviors μ from behavior space $\mathbf{M}_{\Theta,\mathbf{H},\Psi}$ and maximizing some optimization target $\mathcal{L}_{\mathcal{D}}$, wherein $\mathcal{L}_{\mathcal{D}}$ is the optimization target of behavior selection:

$$\mathcal{P}^*_{\mathbf{M}_{\mathbf{H}, \Psi}} := \underset{\mathcal{P}_{\mathbf{M}_{\mathbf{H}, \Psi}}}{\operatorname{argmax}} \mathcal{L}_{\mathcal{P}}$$

Behavior Control Method



Proposition 1 (Policy Model Selection). When \mathcal{F}_{ψ} is a deterministic and individual behavior mapping for each actor at each training step (wall-clock), e.g., **Agent57**, the behavior for each actor can be uniquely indexed by \mathbf{h} , so equation \mathbf{G} can be simplified into

$$\mathcal{L}_{\mathcal{P}} = \mathbb{E}_{\mathbf{h} \sim \mathcal{P}_{\mathbf{H}}} \left[V_{\mu_{\mathbf{h}}}^{\mathrm{TV}} + c \cdot V_{\mu_{\mathbf{h}}}^{\mathrm{TD}} \right], \tag{6}$$

where $\mathcal{P}_{\mathbf{H}}$ is a selection distribution of $\mathbf{h} \in \mathbf{H} = \{\mathbf{h}_1, ..., \mathbf{h}_N\}$. For each actor, the behavior is generated from a selected policy model $\Phi_{\mathbf{h}_i}$ with a pre-defined behavior mapping $\mathcal{F}_{\boldsymbol{\psi}}$.

Agent57, NGU

Proposition 2 (Behavior Mapping Optimization). When all the policy models are used to generate each behavior, e.g., $\mu_{\psi} = \mathcal{F}_{\psi}(\Phi_{\theta,h})$ for single policy model cases or $\mu_{\psi} = \mathcal{F}_{\psi}(\Phi_{\theta_1,h_1},...,\Phi_{\theta_N,h_N})$ for N policy models cases, each behavior can be uniquely indexed by \mathcal{F}_{ψ} , and equation Γ can be simplified into:

$$\mathcal{L}_{\mathcal{P}} = \mathbb{E}_{\psi \sim \mathcal{P}_{\Psi}} \left[V_{\mu_{\psi}}^{\text{TV}} + c \cdot V_{\mu_{\psi}}^{\text{TD}} \right], \tag{7}$$

where \mathcal{P}_{Ψ} is a selection distribution of $\psi \in \Psi$.

LBC (Ours)

Hybrid Behavior Mapping

- 1. **Generalized Policy Selection.** Adjusting the contribution proportion of each learned policy for the behavior via an importance weight w.
- 2. **Policy-Wise Entropy Control.** Controlling the entropy of each policy via an entropy control function f.
- 3. **Behavior Distillation from Multiple Policies.** Distilling the entropy-controlled policies into a behavior policy according to the proportion of contribution and a behavior distillation function g.

$$\mathbf{M}_{\mathbf{H},\Psi} = ig\{ oldsymbol{g}ig(oldsymbol{f}_{ au_1}(\Phi_{\mathbf{h}_1}), \ldots, oldsymbol{f}_{ au_N}(\Phi_{\mathbf{h}_N}), oldsymbol{\omega}_1, \ldots, oldsymbol{\omega}_N ig) | \psi \in \Psi ig\}$$

To control the behavior, the only thing we have to do is to optimize $\psi = (\tau_1, \omega_1 \dots \tau_N, \omega_N) \in \Psi$ with a meta-controller since f, g, N, H are predefined.

Framework

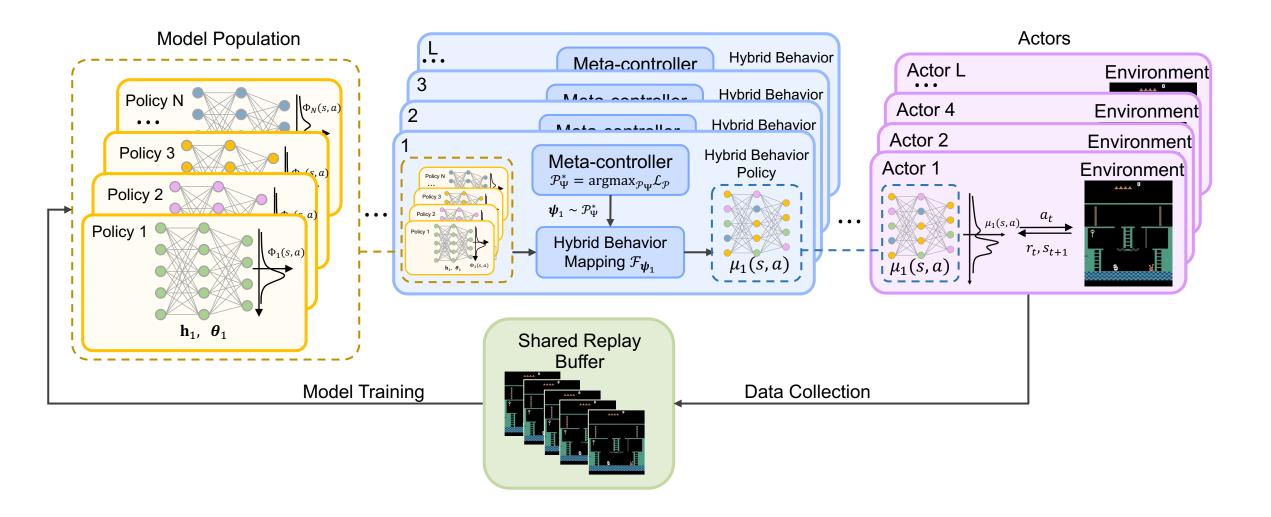


Figure 3: A general framework of LBC.

Experiment

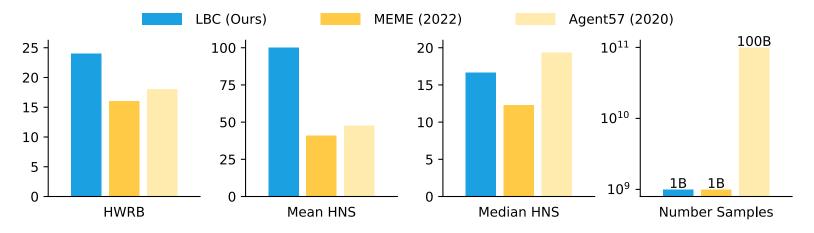


Figure 4: Performance on the 57 Atari.

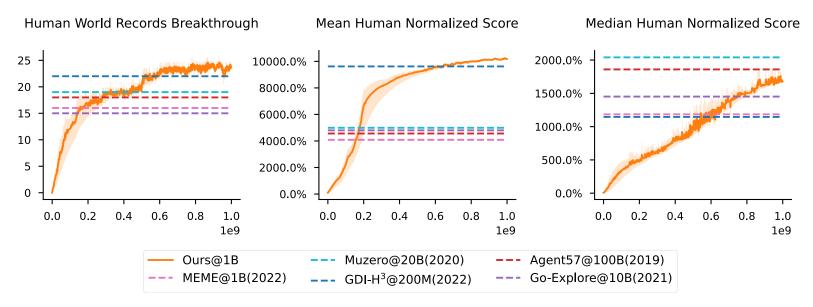


Figure 5: Atari Learning Curve

Experiment

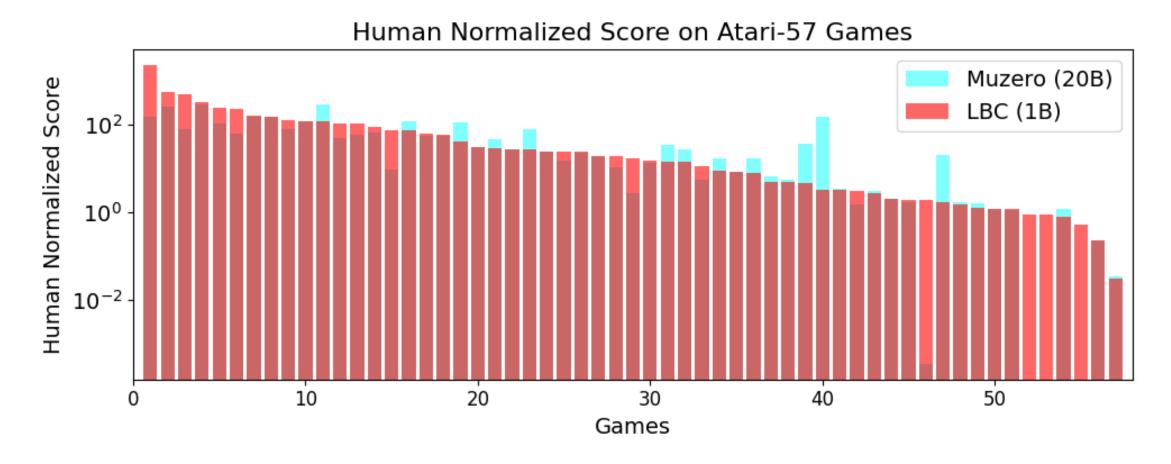


Figure 6: Comparison with Muzero. Human-normalized scores per game at different interaction budgets, sorted from highest to lowest.

Conclusion and Research Map

Behavioral Control in RL

- 1. GDI: **Theoretical Guarantee**. Behavioral control in single policy RL. (Done)
- 2. LBC: **General way**. Behavior control in population-based RL. (Done)
- 3. Multi-Game LBC: Behavior control in **Multi-Task RL**. (In progress)
- 4. Robo BC: Behavior control in **Robotics**. (In progress)

What's Next?
Can We Unify the Behavior Control in RL? Yes!

Thank you for your listening!

Contact: fanjj21@mails.tsinghua.edu.cn

Blogs: lbc.jiajunfan.com