Learning a Data-Driven Policy Network for Pre-Training Automated Feature Engineering

Liyao Li,Haobo Wang,Liangyu Zha,Qingyi Huang,Sai Wu,Gang Chen,Junbo Zhao*

Li et al.

Background of Tabular Data Prediction

columns = features or attributes of each sample								
		ـــــ				target		
	RowID	Age	Gender	Weight (kg)	Height (m)	Heart disease		
	1	25	М	75	1.82	No		
	2	37	F	52	1.57	No		
Tabular data:	3	75	F	69	1.63	Yes	- rows = samples	
	4	54	М	73	1.68	Yes	- Tows - samples	
	10000	69	М	88	1.75	Yes		

columns = features or attributes of each sample

Tabular data prediction usually is <u>classification or regression task</u> based on <u>target</u> value.

Common models to fit tabular data:

- ➤ Neural network (NN): MLP, Wide&Deep, TabNet, NODE, FT-Transformer
- Gradient Boosting Decision Tree (GBDT): Xgboost, LightGBM, CatBoost, Random Forest

Background of Tabular Data Prediction

columns – leatures or attributes of each sample									
		(target			
	RowID	Age	Gender	Weight (kg)	Height (m)	Heart disease			
	1	25	М	75	1.82	No			
	2	37	F	52	1.57	No			
Tabular data:	3	75	F	69	1.63	Yes	- rows = samples		
	4	54	М	73	1.68	Yes			
	•••								
	10000	69	М	88	1.75	Yes			

columns = features or attributes of each sample

Recent works [1-3] show that GBDT generally outperforms NN on tabular data prediction.

GBDT is widely used in Kaggle competition and other business scenarios.

[1] Gorishniy, et al. "Revisiting deep learning models for tabular data." NIPS. 2021.

[2] Grinsztajn, et al. "Why do tree-based models still outperform deep learning on typical tabular data?." NIPS. 2022.

[3] Shwartz-Ziv, et al. "Tabular data: Deep learning is not all you need." Information Fusion. 2022.

Li et al.

Background of Feature Engineering

When choosing GBDT, it is important to preprocess features since generating informative features and removing redundant ones could significantly <u>improve fitting performance</u> and enjoy <u>high interpretability</u>.

Feature Engineering (FE): feature generation and feature selection.

Common FE operations / actions:

- Unary: abs, square, inverse, log, sqrt, power3
- ➢ Binary: +, -, ×, ÷, cross-combine

Selection: *delete*

Background of Feature Engineering

For example, when dealing with a heart disease classification task, an experienced data scientist would generate a new feature named *body mass index* (BMI=Weight/Height²) based on prior knowledge, as studies have shown a significant correlation between this index and the probability of developing heart disease.

Thus, this new feature can help the model fit better.

FE action sequence: Divide(Weight, Square(Height))

RowID	Age	Gender	Weight (kg)	Height (m)	Weight/Height ²	Heart disease
1	25	Μ	75	1.82	22.64	No
2	37	F	52	1.57	21.10	No
3	75	F	69	1.63	29.73	Yes
4	54	М	73	1.68	25.86	Yes
	•••					
10000	69	М	88	1.75	28.73	Yes

Background of Feature Engineering

Feature Engineering is traditionally conducted by human experts.

- They usually tends to <u>investigate the data</u>, such as analyzing its distribution, identifying the outliers, measuring the correlation between columns, etc., and then proposes an FE plan.
- They also can <u>accumulate FE knowledge</u> to accelerate decision-making when facing a new dataset.

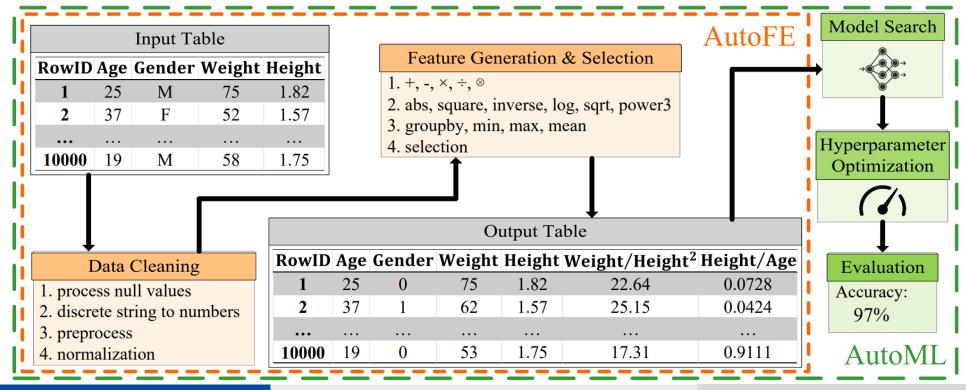
Drawback:

- labor intensive, needs lots of *trial-and-error*
- ➤ time-consuming

Background of Automated Feature Engineering

Automated Feature Engineering has emerged as a crucial component of AutoML pipeline.

Most AutoFE methods are based on <u>reinforcement learning</u>, inspired by neural architecture search from AutoML.



Li et al.

FETCH: a Data-Driven AutoFE

7 / 23

ICLR 2023

Problem of Automated Feature Engineering

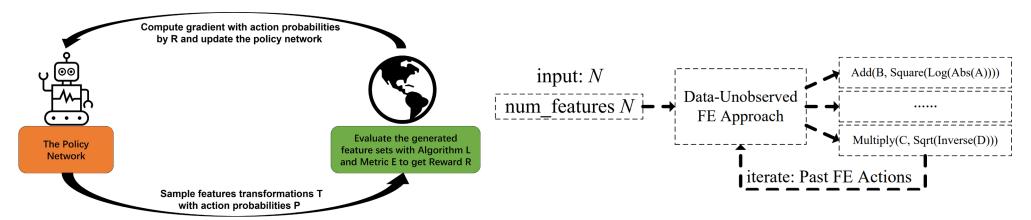
The purpose (or objective function) of feature engineering is defined as Equation 1. Given a dataset $\mathbf{D} = (\mathbf{X}, \mathbf{Y})$ with a set of original features \mathbf{X} and the target \mathbf{Y} , search a sequence of transformation actions \mathcal{T} to derive a transformed feature set $\hat{\mathbf{X}}_{\mathcal{T}}$, which maximizes the cross-validation performance $\mathbf{E}(\mathbf{L}(\hat{\mathbf{X}}_{\mathcal{T}}, \mathbf{Y}))$ for a given algorithm \mathbf{L} and a metric \mathbf{E} .

$$\mathcal{T} = \underset{\mathcal{T}}{\arg\max} \mathbf{E}(\mathbf{L}(\hat{\mathbf{X}_{\mathcal{T}}}, \mathbf{Y}))$$
(1)

Data-Unobserved Methods

Existing AutoFE methods [1-3]:

- \succ Generally initialized by the total number of features *N*.
- Embedded the past FE actions as the *state* in their MDP.
- > Learning the mapping from one FE action sequence to another with better performance.



[1] Khurana, et al. "Feature engineering for predictive modeling using reinforcement learning." AAAI. 2018.

[2] Chen, et al. "Neural feature search: A neural architecture for automated feature engineering." ICDM. 2019.

[3] Zhu, et al. "DIFER: differentiable automated feature engineering." International Conference on Automated Machine Learning. 2022.

Li et al.

FETCH: a Data-Driven AutoFE

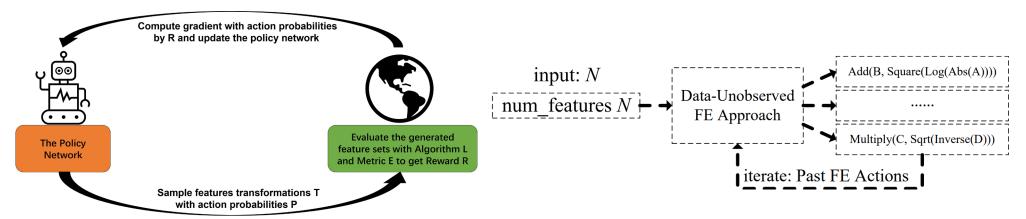
ICLR 2023 9 / 23

Data-Unobserved Methods

Limitations of existing AutoFE methods [1-3]:

Deviating from how human experts cope with the data

- ➤ Generate features via a <u>data-unobserved</u> way, unhelpful for understanding the data.
- Lack transferability, unfeasible to borrow knowledge from previous training experience to speed up the exploration process when facing a completely new dataset.



[1] Khurana, et al. "Feature engineering for predictive modeling using reinforcement learning." AAAI. 2018.

[2] Chen, et al. "Neural feature search: A neural architecture for automated feature engineering." ICDM. 2019.

[3] Zhu, et al. "DIFER: differentiable automated feature engineering." International Conference on Automated Machine Learning. 2022.

Li et al.

FETCH: a Data-Driven AutoFE

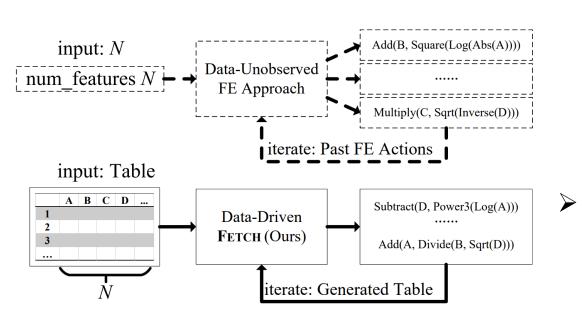
ICLR 2023

10 / 23

Proposed FETCH An Overview of Main Contributions

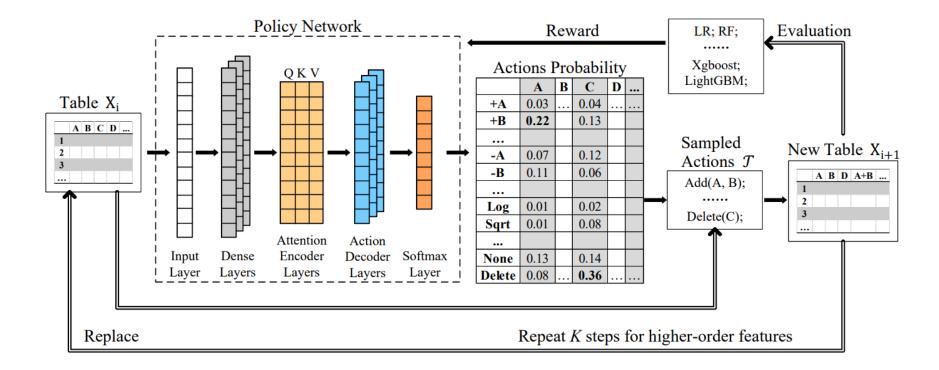
To emulate the human experts:

- We propose a <u>data-driven</u> AutoFE framework for both
 classification and regression tasks, dubbed *FETCH*. It
 learns how to map raw data to suitable FE actions
 sequence. Empirical results show its on-par or superior
 performances to the previous state-of-the-art methods.
 For the first time, we characterize a transferability
- principle for AutoFE. It reflects how much knowledge or experience a trained policy may be able to accumulate to enable the exploration of unseen datasets, which is also linked to the across-datasets *pre-training* paradigm.



Li et al.

Proposed FETCH Overall Model Architecture

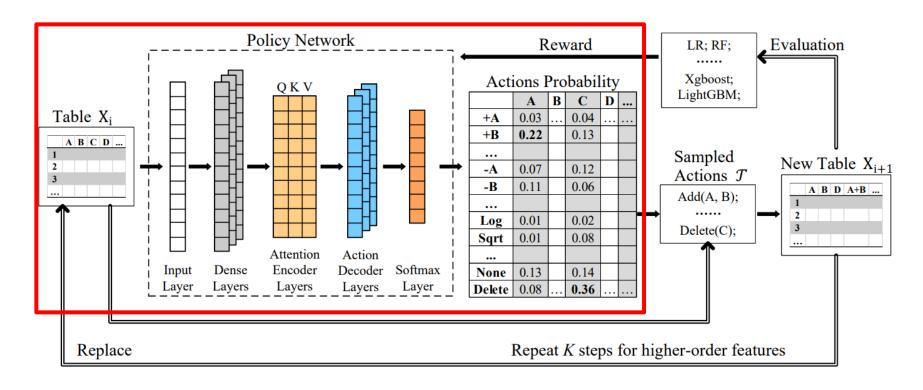


FETCH: a Data-Driven AutoFE

ICLR 2023 12 / 23

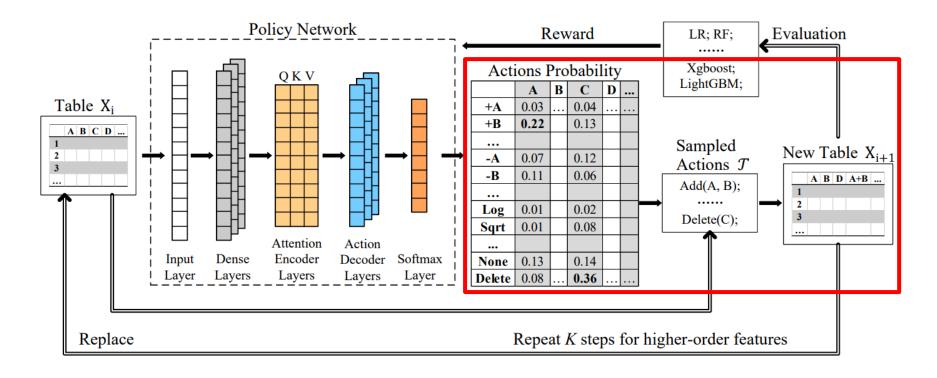
Overall Model Architecture

- > A table Xi is input to the attention-based policy network as the *state*.
- The policy network learns the representation of each column in the table and maps it to the probability of selecting feature engineering actions (like +A, Log, Delete...).



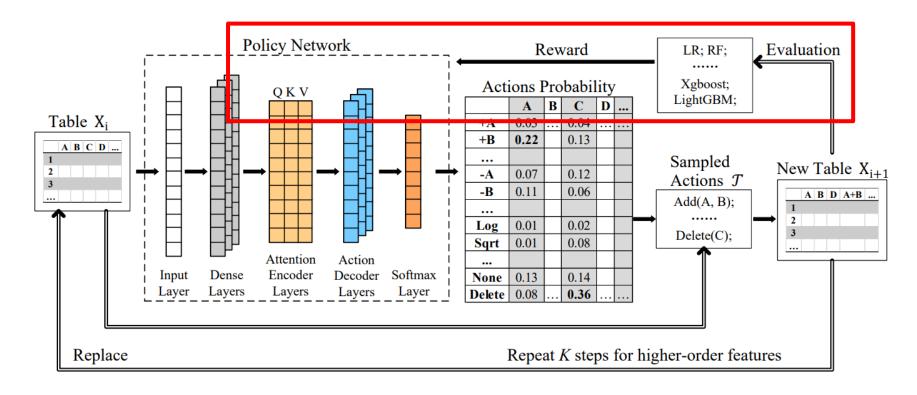
Overall Model Architecture

Sample a set of feature engineering actions, which specifies which columns to operate on and generates a new table Xi+1 containing new features.



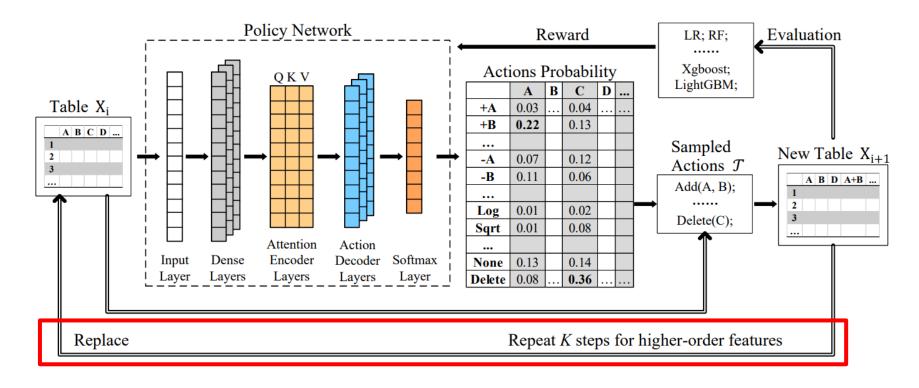
Overall Model Architecture

- ➤ The new table Xi+1 is input to pre-defined ML algorithm for cross-validation evaluation.
- The evaluation score is used as *reward* to update policy network through Proximal Policy Optimization (PPO).



Overall Model Architecture

To generate high-order features, the original input Xi will be replaced by the newly generated feature set Xi+1.



Transferability via Pre-Training

- For the first time, our work attempts to use the pre-training of the AutoFE policy network to achieve transfer learning on multiple tabular datasets.
- We pre-train the policy network on some large-scale tabular datasets one by one and then fine-tune it on a smaller target dataset to generate effective features for the target dataset.
- Our experiments show that the pre-trained policy network can significantly reduce the searching epoch number and achieve better performance than training from scratch on the target dataset.

Proposed FETCH MDP Setup

State: Input or post-transformation tabular data **X**. (the core innovation of our MDP setup)

FE Action Space:

- For numeric features
 - The unary operation: abs, square, inverse, log, sqrt, power3
 - The binary operation: +, -, \times , \div
- For categorical features: binning, cross-combine
- Feature selection: delete, terminate

Reward Function:

$$\mathcal{R}(\mathbf{X}_i) = \bar{E}(\mathbf{X}_i) + E_{\text{diff}}(\mathbf{X}_i)$$

where \bar{E} represents the average performance obtained from k-fold cross-validation and

$$E_{\text{diff}}(\mathbf{X}_i) = \sum_k \min(0, E_k(\mathbf{X}_i) - \bar{E}(\mathbf{X}_{i-1}))$$

Experiments

Settings

Goals:

- Effectiveness of our data-driven MDP setup, compared with previous SOTA methods like DIFER, NFS.
- Validation of transferability via pre-training.
- Other ablation studies.

Datasets:

- 27 datasets including 11 regression (R) tasks and 16 classifications (C) tasks.
- Publicly published on OpenML, UCI repository and Kaggle.

Metric:

- Classification tasks: F1-score
- Regression tasks: (1 (relative absolute error))
- Both are higher the better. \uparrow

Experiments

Effectiveness

- LIKE K S 9 1 KEN
- FETCH achieves state-of-the-art performance on 25 out of 27 datasets overall and gets a close second place in the remaining datasets.
- FETCH still has a great advantage, with 18 out of 27 datasets in total performing better than 2 AutoML methods. Table 1: Effectiveness comparison of FETCH with other AutoFE and AutoML methods. Bold indicates superior results amongst AutoFE methods. Note that AutoML methods focus on model search instead of feature engineering.

Detect	Dataset C/R Instances\Featur		AutoFE Methods							AutoML Methods	
Dataset	C/K	Instances\Features	Base	Random	DFS	AutoFeat	NFS	DIFER	Fetch	AutoSklearn	AutoGluon
Airfoil	R	1503\5	0.5068	0.6211	0.6003	0.5955	0.6226	0.6125	0.6463	0.5151	0.5083
BikeShare DC	R	10886\11	0.9880	0.9989	0.9990	0.9891	0.9991	0.9995	0.9997	0.9911	0.9967
House King County	R	21613\19	0.6843	0.6838	0.6908	0.6917	0.6934	0.6948	0.7475	0.7005	0.7442
Housing Boston	R	506\13	0.4641	0.4788	0.4708	0.4703	0.4977	0.5072	0.5224	0.4403	0.4857
Openml_586	R	1000\25	0.6564	0.6646	0.7188	0.7178	0.7223	0.6946	0.7671	0.7297	0.7904
Openml_589	R	1000\25	0.6395	0.6285	0.6956	0.7278	0.7165	0.6789	0.7562	0.7183	0.7998
Openml_607	R	1000\50	0.6363	0.6392	0.6815	0.6499	0.6485	0.6564	0.7404	0.7265	0.7694
Openml_616	R	500\50	0.5605	0.5834	0.5807	0.5927	0.5856	0.5982	0.6749	0.6618	0.6743
Openml_618	R	1000\50	0.6351	0.6277	0.6848	0.6374	0.6461	0.6553	0.7351	0.7198	0.7520
Openml_620	R	1000\25	0.6309	0.6288	0.6528	0.6574	0.6943	0.7262	0.7506	0.7199	0.7855
Openml_637	R	500\50	0.5160	0.5478	0.5105	0.5763	0.5739	0.6006	0.6453	0.6416	0.6742
Adult Income	С	48842\14	0.8478	0.8485	0.8502	0.8483	0.8497	0.8584	0.8537	0.8629	0.8738
Amazon Employee	C	32769\9	0.9450	0.9442	0.9451	0.9453	0.9461	0.9474	0.9479	0.9471	0.9473
Credit Default	C	30000\25	0.8044	0.8089	0.8056	0.8086	0.8101	0.8108	0.8114	0.8194	0.8214
Credit_a	C	690\6	0.8362	0.8665	0.8216	0.8581	0.8695	0.8638	0.8754	0.8623	0.8377
Fertility	C	100\9	0.8700	0.8947	0.7900	0.8910	0.9189	0.8800	0.8900	0.8400	0.8800
German Credit	C	1001\24	0.7390	0.7738	0.7490	0.7600	0.7786	0.7730	0.7910	0.7460	0.7590
Hepatitis	C	155\12	0.8258	0.8639	0.8516	0.8677	0.8766	0.8839	0.9290	0.8065	0.7871
Ionosphere	C	351\34	0.9237	0.9514	0.9373	0.9286	0.9543	0.9515	0.9716	0.8194	0.8214
Lymphography	C	690\6	0.8315	0.8480	0.8113	0.8453	0.8614	0.8827	0.9260	0.8418	0.8522
Megawatt1	C	4900\12	0.8655	0.8706	0.8813	0.8893	0.9167	0.9089	0.9209	0.8853	0.8850
Messidor Features	C	1150\19	0.6594	0.7026	0.7089	0.7359	0.7417	0.7541	0.7689	0.7402	0.7255
PimaIndian	C	768\8	0.7566	0.7609	0.7540	0.7643	0.7784	0.7839	0.7969	0.7462	0.7631
SpamBase	С	4601\57	0.9154	0.9211	0.9198	0.9237	0.9341	0.9372	0.9405	0.9272	0.9042
SpectF	C	267\44	0.7751	0.8221	0.8125	0.8331	0.8608	0.8538	0.8838	0.7828	0.7010
Wine Quality Red	C	999\12	0.5597	0.5774	0.5422	0.5641	0.5814	0.5779	0.6042	0.5804	0.5729
Wine Quality White	С	4900\12	0.4976	0.5046	0.4855	0.5023	0.5111	0.5153	0.5235	0.5376	0.5259

Li et al.

FETCH: a Data-Driven AutoFE

Experiments

Transferability

- Pre-training approach can be effective in improving scores and finding more appropriate feature engineering actions faster.
- Pre-training on data-driven FETCH can accumulate and transfer prior knowledge to unobserved datasets and improve FE efficacy more effectively.

Pre-trained Datasets	5 from OpenML	5 from UCI repo.		
No-Pre				
Pre-Oml	\checkmark			
Pre-Uci		\checkmark		
Pre-Mix	\checkmark	\checkmark		

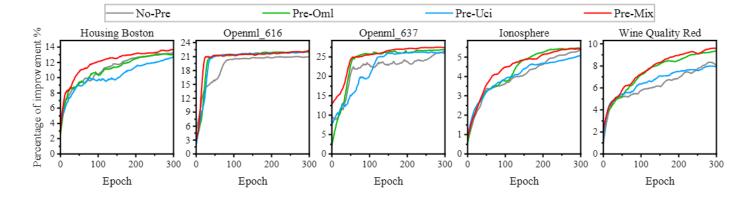


Figure 4: Transferability comparison of improvement (%) on 5 datasets under the model from scratch (No-Pre) and 3 kinds of pre-training models (Pre-Oml, Pre-Uci, and large-scale Pre-Mix).

Table 2: Transferability comparison of the best pre-trained model (Pre-Best) and non-pre-trained one (No-Pre). See text for details.

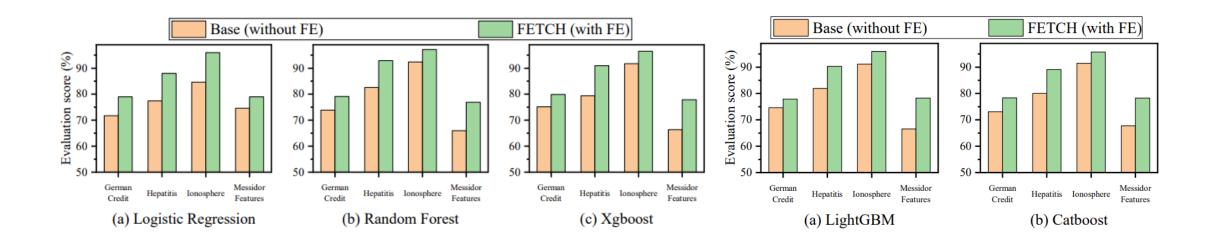
Dataset	No-Pre	Pre-Best	Max-Diff (%)	$Epoch_{Max-Diff}$
Housing Boston	0.5224	0.5357	2.31	123
Openml_616	0.6749	0.6942	4.67	27
Openml_637	0.6453	0.6631	5.51	26
Ionosphere	0.9716	0.9864	1.12	148
Wine Quality Red	0.6042	0.6207	2.59	152

ICLR 2023

21 / 23

Experiments Flexibility toward Model Choices

> FETCH has the effect of promoting the fitting performance for all these ML models.



FETCH: a Data-Driven AutoFE

ICLR 2023 22 / 23

We propose a <u>data-driven</u> AutoFE framework for both classification and regression tasks, dubbed *FETCH*. It learns how to map raw data to suitable FE actions sequence. Empirical results show its on-par or superior performances to the previous state-of-the-art methods.

For the first time, we characterize a <u>transferability</u> principle for AutoFE. It reflects how much knowledge or experience a trained policy may be able to accumulate to enable the exploration of unseen datasets, which is also linked to the across-datasets *pre-training* paradigm.