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Success of diffusion models :

 Image, video, audio, etc...
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Video generated by Video Diffusion Models Visualization of WaveGrad

I“ : {jl ;

i 1

WEN \

A mecha robot in a favela in A hig tech solarpnk utopia Pikachu in the syle of
an expressionist style in the Amazon forest Munch’s “The Scream”

DALL-E2: A. Ramesh, et al. “Hierarchical Text-Conditional Image Generation with CLIP Latents”. arXiv:2204.06125, 2022; Video Diffusion Models: J. Ho, et al. “Video diffusion models”. arXiv:2204.03458, 2022;

WaveGrad: N. Chen et al. “WaveGrad: Estimating Gradients for Waveform Generation”. ICLR 2021; Stable Diffusion: R. Rombach, et al. “High-Resolution Image Synthesis with Latent Diffusion Models”.
arXiv:2112.10752, 2022.




Formulation as SDE (songetal, 2020): fOrward process °
0 t

true data distribution Gaussian distribution

gradually add noise

Xo ~ po, dX; = —X,dt ++/2dB; (OU process)

Brownian motion

* The distribution of X, attime ¢ :

1 z — puey°
pt(x) = [ po(y) . a ©XP | 2 H

Y. Song et al. “Score-based generative modeling through stochastic differential equations”. ICLR 2021




Formulation as SDE (songetal, 2020): backward process
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Yo ~ p, dY; = (Y; + 2V logp+_,(Y3))dt + +/2d By

Brownian motion

m=p Y ~ Do (recovers the true data distribution)

Y. Song et al. “Score-based generative modeling through stochastic differential equations”. ICLR 2021

U. G. Haussmann & E. Pardoux. “Time Reversal of Diffusions”. The annals of Probability, 14(4): 1188—1205, 1986.




Formulation as SDE (songetal, 2020): backward process

almost Gaussian

Pt
|
0

dY; = (Y, + 2Vlogp=_,(Y;))dt + v/2d By

Brownian motion

The exact value of the score Vlogp;(x) cannot be obtained
because it depends on pg

Y. Song et al. “Score-based generative modeling through stochastic differential equations”. ICLR 2021

U. G. Haussmann & E. Pardoux. “Time Reversal of Diffusions”. The annals of Probability, 14(4): 1188—1205, 1986.




Formulation as SDE (songetal, 2020): backward process

I .
< I | almost Gaussian

T 0
Yo ~ p, dY; = (V; +2Vlogp=_,(Y:))dt + +/2d By

Brownian motion

The exact value of the re Vlogp:(z) cannot be obtained
because it depends on

Yo ~N(0,I), dY; = (V; +25(Ys, T — t))dt + v2d B,

the score network, trained with finite sample

Y. Song et al. “Score-based generative modeling through stochastic differential equations”. ICLR 2021

U. G. Haussmann & E. Pardoux. “Time Reversal of Diffusions”. The annals of Probability, 14(4): 1188—1205, 1986.




Score matching to train the score network 7

 The true score minimizes the following loss:

T
IE X9 ~po /O]EXt|X0~N(mth,at2)[”3(Xt|XO>t)_VIngt(Xt|XO)||2] dt
t=

v

Computed by sampling (¢, X;) ~ Unif[0, T] x N (m;Xo, 0?)

P. Vincent. “A connection between score matching and denoising autoencoders.” Neural computation, 23(7):1661— 1674, 2011.




Score matching to train the score network :

 The true score minimizes the following loss:
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- Replace the expectation w.r.t. pg by finite sample x1,--- ,Z,, ~ Po
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empirical score matching loss

How close the generated distribution is to p,?

P. Vincent. “A connection between score matching and denoising autoencoders.” Neural computation, 23(7):1661— 1674, 2011.

More formally, the lower limit of the integral interval in the empirical score matching loss is needed to be replaced by a very small truncation time 7' for a technical reason.



Score matching to train the score network :

 The true score minimizes the following loss:
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empirical score matching loss

How good is the diffusion modeling
as a distribution estimator based on n data?

P. Vincent. “A connection between score matching and denoising autoencoders.” Neural computation, 23(7):1661— 1674, 2011.

More formally, the lower limit of the integral interval in the empirical score matching loss is needed to be replaced by a very small truncation time 7' for a technical reason.



Existing work on error analysis "’

- Most works analyzed how the score estimation error, given as an assumption,
affects the generated data distribution

+ Continuous time: Song et al. (2021); De Bortoli et al. (2022a)
+ Discrete time: Lee et al. (2022a;b); Chen et al. (2023)

+ Non-quantitative bound under manifold assumption: Pidstrigach (2022)

« Sample complexity bounds

+ W1 bound of n=%/¢ with manifold assumption: De Bortoli et al. (2021)
+ Not considering “generalization” and unimprovable

+ Based on the convergence of the empirical measure Wl(% D ieq 0zisD0) =M
(Weed and Bach, 2019)

~1/d

e Concurrent work (appeared after the submission of this work). Chen et al. (2023)

Song et al.“Maximum likelihood training of score-based diffusion models”. Neur/PS 2021; Chen et al: “Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions”. ICLR
2023.; Lee et al. “Convergence of score-based generative modeling for general data distributions.” NeurlPS 2022 Workshop on Score-Based Methods, 2022a.; Lee et al. “Convergence for score-based generative

modeling with polynomial complexity”, NeurlPS 2022, 2022b.; De Bortoli et al. “Diffusion Schrédinger bridge with applications to score-based generative modeling”. NeurlPS 2021; De Bortoli et al. “Convergence of
denoising diffusion models under the manifold hypothesis”. TMLR 2022.; Weed and Bach. “Sharp asymptotic and finite-sample rates of convergence of empirical measures in wasserstein distance”. Bernoull,
25(4A):2620—2648, 2019. Chen et al.: “Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data”. arXiv:2302.07194, 2023.




Analysis of diffusion models 1
from statistical learning theory

po is supported on [—1,1]¢, upper and lower bounded in the support, and
c B?°
Po p,q,C

with s > (1/p — 1/2), as a density function on [—1,1]¢.

PY S
quC

< Intuition: HfHst%q(Q) — HfHLP(Q) -+ HDSfHLp(Q)

Besov space B; , with the norm bounded by (' (some constant)

po is sufficiently smooth on the edge of Very smooth

the support [-1,1]4\ [-1+n~"7 ,1—n""7 |2
Besov space




Analysis of diffusion models &
from statistical learning theory

* Hypothesis network class: sparsity-constrainted deep ReLU networks
(Schmidt-Hieber, 2020; Suzuki, 2019)

( (depth) (width) : S (sparsity-constraint; num. of non-zero params)7 B (magnitude))

— { ALRGLU —I—bL) O(Alaj‘—l—bl)| Az c Rwixwi+l,bi c Rwiﬂ7 HwHoo < W,

Z(HAZIIO + [[6°llo) <5, max [|A"[lo V [[b']|oo < B}

1=1

« Sparsity-constraint yields tighter generalization error bounds

J. Schmidt-Hieber. “Nonparametric regression using deep neural networks with Relu activation function.” The Annals of Statistics, 48(4):1875-1897, 2020.

T. Suzuki. “Adaptivity of deep Relu network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality”. ICLR 2019.



Main result : minimax optimality in TV oo

(Theorem 1

The generated data distribution by using the score network S that minimizes
the empirical score matching loss over S(L, W, S, B) yields that

S

‘43{% n {TV(YT, XO)} 5 n 2s+d logg(n),

under the appropriate choice of 7,7, L,W, S, and B.

This rate is the minimax optimal (up to polylog), because it also holds that

n~ 2std < inf sup 43{x. n_ [TV(,&,XO)].
" e : 3 2 1=
pr:estimator p o GBP,%C

More formally, YT is needed to be replaced by fL_T for a technical reason in the above.




Basis decomposition tailored for score approximati@n 1

« B-spline basis decomposition of po(€ BS p.q. C - Z Q. Mffg bg

(Devore & Popov, 1988) B- Splme basis

- Approximation of p:(z):

pla) = [ o) ——— e (—"x‘“;y”2)dy

d d 2
) of(2m)2 op
approximation via Ko (aly) Approximated by NN very
B-spline basis efficiently (polylog size)

~3 i [ M ) Eilely)ay /

=: Fyj pi(2,1) diffused B-spline basis

Vpi(z)
pe(T)

+ Approximate Vp;(z) in the same way and use V log p;(z) =

R. A. DeVore, & V. A. Popov. “Interpolation of Besov spaces. “Transactions of the American Mathematical Society, 305(1):397—414, 1988.




Main result @: manifold hypothesis L

RY 4

-

q(2) * po lies on a ¢’-dimensional plane (d' < d)

 Density function on the canonical coordinate

d/
z€R system on the plane q belongs to B

Based on {z;}"™_;, we can train the score network S that satisfies

4“
J{wi ?:1

s+1—6

[Wl(YT, Xo)} 5 n 2s+d’ |

(6(> 0): arbitrarily fixed constant)

Diffusion models can avoid the curse of dimensionality!

More formally, YT is needed to be replaced by fL_T for a technical reason in the above.




