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2Success of diffusion models

Image generated by DALL·E2

DALL·E2: A. Ramesh, et al. “Hierarchical Text-Conditional Image Generation with CLIP Latents”. arXiv:2204.06125, 2022; Video Diffusion Models: J. Ho, et al. “Video diffusion models”. arXiv:2204.03458, 2022; 
WaveGrad: N. Chen et al. “WaveGrad: Estimating Gradients for Waveform Generation”. ICLR 2021; Stable Diffusion: R. Rombach, et al. “High-Resolution Image Synthesis with Latent Diffusion Models”. 
arXiv:2112.10752, 2022. 

• Image, video, audio, etc…

A mecha robot in a favela in 
an expressionist style

Pikachu in the style of 
Munch’s “The Scream”

A high tech solarpunk utopia 
in the Amazon forest

• Several pictures I made with Stable Diffusion:
Video generated by Video Diffusion Models Visualization of WaveGrad
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0 𝑡

Y. Song et al. “Score-based generative modeling through stochastic differential equations”. ICLR 2021

Formulation as SDE (Song et al., 2020): forward process

Gaussian distribution

• The distribution of        at time    :

…

true data distribution

(OU process)
Brownian motion
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Y. Song et al. “Score-based generative modeling through stochastic differential equations”. ICLR 2021
U. G. Haussmann & E. Pardoux. “Time Reversal of Diffusions”. The annals of Probability, 14(4): 1188–1205, 1986.

Formulation as SDE (Song et al., 2020): backward process

Brownian motion

…

(recovers the true data distribution)

0𝑇
almost Gaussian

0 𝑇
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Y. Song et al. “Score-based generative modeling through stochastic differential equations”. ICLR 2021
U. G. Haussmann & E. Pardoux. “Time Reversal of Diffusions”. The annals of Probability, 14(4): 1188–1205, 1986.

Formulation as SDE (Song et al., 2020): backward process

…

𝑇

The exact value of the score                  cannot be obtained
because it depends on 

0𝑇
almost Gaussian

0

Brownian motion
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Y. Song et al. “Score-based generative modeling through stochastic differential equations”. ICLR 2021
U. G. Haussmann & E. Pardoux. “Time Reversal of Diffusions”. The annals of Probability, 14(4): 1188–1205, 1986.

Formulation as SDE (Song et al., 2020): backward process

0𝑇
almost Gaussian

…

0 𝑇

The exact value of the score                  cannot be obtained
because it depends on 

the score network, trained with finite sample

Brownian motion
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P. Vincent. “A connection between score matching and denoising autoencoders.” Neural computation, 23(7):1661– 1674, 2011.

Score matching to train the score network
• The true score minimizes the following loss: 

★★

Computed by sampling             
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P. Vincent. “A connection between score matching and denoising autoencoders.” Neural computation, 23(7):1661– 1674, 2011.

Score matching to train the score network
• The true score minimizes the following loss: 

• Replace the expectation w.r.t. by finite sample 

How close the generated distribution is to 𝒑𝟎?

empirical score matching loss

More formally, the lower limit of the integral interval in the empirical score matching loss is needed to be replaced by a very small truncation time        for a technical reason.
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P. Vincent. “A connection between score matching and denoising autoencoders.” Neural computation, 23(7):1661– 1674, 2011.

Score matching to train the score network
• The true score minimizes the following loss: 

• Replace the expectation w.r.t. by finite sample 

How good is the diffusion modeling 
as a distribution estimator based on 𝒏 data?

empirical score matching loss

More formally, the lower limit of the integral interval in the empirical score matching loss is needed to be replaced by a very small truncation time        for a technical reason.
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• Most works analyzed how the score estimation error, given as an assumption,
affects the generated data distribution

Continuous time: Song et al. (2021); De Bortoli et al. (2022a)
Discrete time: Lee et al. (2022a;b); Chen et al. (2023)
Non-quantitative bound under manifold assumption: Pidstrigach (2022)

Song et al.“Maximum likelihood training of score-based diffusion models”. NeurIPS 2021; Chen et al: “Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions”. ICLR 
2023.; Lee et al. “Convergence of score-based generative modeling for general data distributions.” NeurIPS 2022 Workshop on Score-Based Methods, 2022a.; Lee et al. “Convergence for score-based generative 
modeling with polynomial complexity”, NeurIPS 2022, 2022b.; De Bortoli et al. “Diffusion Schrödinger bridge with applications to score-based generative modeling”. NeurIPS 2021; De Bortoli et al. “Convergence of 
denoising diffusion models under the manifold hypothesis”. TMLR 2022.; Weed and Bach. “Sharp asymptotic and finite-sample rates of convergence of empirical measures in wasserstein distance”. Bernoulli, 
25(4A):2620–2648, 2019. Chen et al.: “Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data”. arXiv:2302.07194, 2023.

Existing work on error analysis

❖

❖

❖

Not considering “generalization” and unimprovable 
W1 bound of 𝑛!"/$ with manifold assumption: De Bortoli et al. (2021)

• Sample complexity bounds
❖

✻

✻ Based on the convergence of the empirical measure 
(Weed and Bach, 2019)

• Concurrent work (appeared after the submission of this work): Chen et al. (2023) 



11Analysis of diffusion models                                  
from statistical learning theory

• A1:  𝑝! is supported on −1,1 ", upper and lower bounded in the support, and                                                

with 𝑠 > ⁄1 𝑝 − ⁄1 2 # as a density function on −1,1 ". 

A1

• : Besov space        with the norm bounded by      (some constant)

Intuition:❖

A2 𝑝! is sufficiently smooth on the edge of 
the support

Very smooth

Besov space



12Analysis of diffusion models                                  
from statistical learning theory

• Hypothesis network class: sparsity-constrainted deep ReLU networks

(depth) (sparsity-constraint; num. of non-zero params)(width)

(Schmidt-Hieber, 2020; Suzuki, 2019)

J. Schmidt-Hieber. “Nonparametric regression using deep neural networks with Relu activation function.” The Annals of Statistics, 48(4):1875–1897, 2020.
T. Suzuki. “Adaptivity of deep Relu network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality”. ICLR 2019.

(magnitude)

• Sparsity-constraint yields tighter generalization error bounds



13Main result ①: minimax optimality in TV

Theorem 1

under the appropriate choice of and    . 

The generated data distribution by using the score network that minimizes 
the empirical score matching loss over yields that 

This rate is the minimax optimal (up to polylog), because it also holds that

More formally,        is needed to be replaced by             for a technical reason in the above.  



14Basis decomposition tailored for score approximation

R. A. DeVore, & V. A. Popov. “Interpolation of Besov spaces. “Transactions of the American Mathematical Society, 305(1):397–414, 1988.

• Approximation of          :

Approximate in the same way and use❖

• B-spline basis decomposition of                        :
B-spline basis(Devore & Popov, 1988)

Approximated by NN very 
efficiently (polylog size)

diffused B-spline basis

approximation via 
B-spline basis



15Main result ②: manifold hypothesis

Theorem 2
Based on , we can train the score network      that satisfies

Diffusion models can avoid the curse of dimensionality!

• 𝑝! lies on a -dimensional plane
• Density function on the canonical coordinate 

system on the plane 𝑞 belongs to

( arbitrarily fixed constant)

More formally,        is needed to be replaced by             for a technical reason in the above.  


