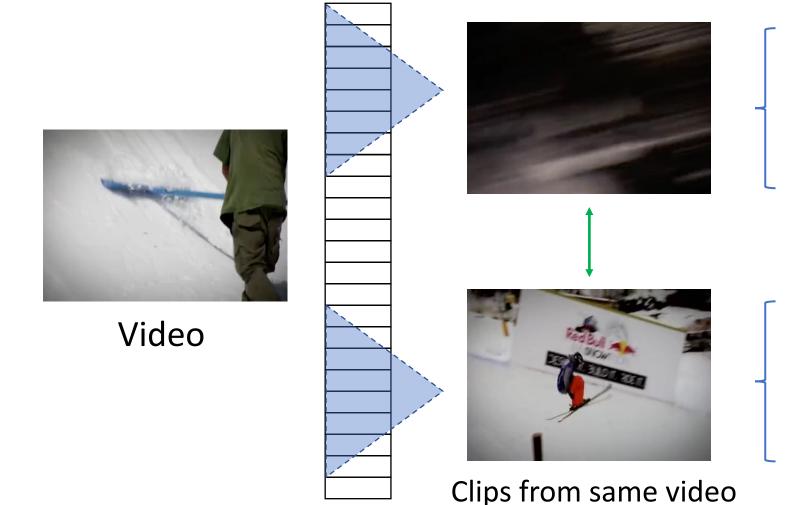
Look Globally and Locally: Inter-Intra Contrastive Learning from Unlabeled Videos

ICLR 2023 ME-FoMo Workshop

David Fan, Deyu Yang, Xinyu Li, Vimal Bhat, Rohith MV
Amazon Prime Video

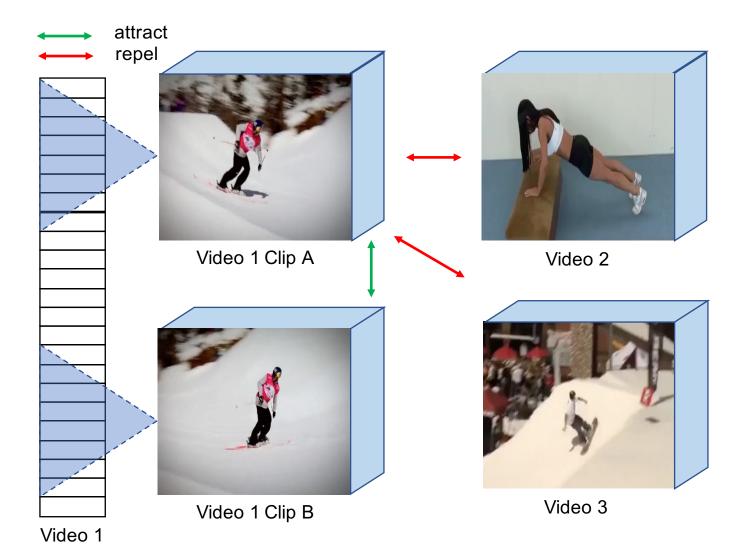
Dominant self-supervised contrastive learning methods for video focus on learning relationships of clips within the **same** video.



Same video!

- Spatiotemporal augmentation
- Clip shuffling / frame shuffling
- Speed-up
- Flip directionality
- Frame inpainting

What happens to other videos?



- Pushup and snowboarding are both negative to skiing anchor.
 - But *snowboarding*-skiing is more similar than pushup-skiing.
- When positives are only sampled from the <u>same video</u> ("intravideo"), other similar videos will never be leveraged as positives.

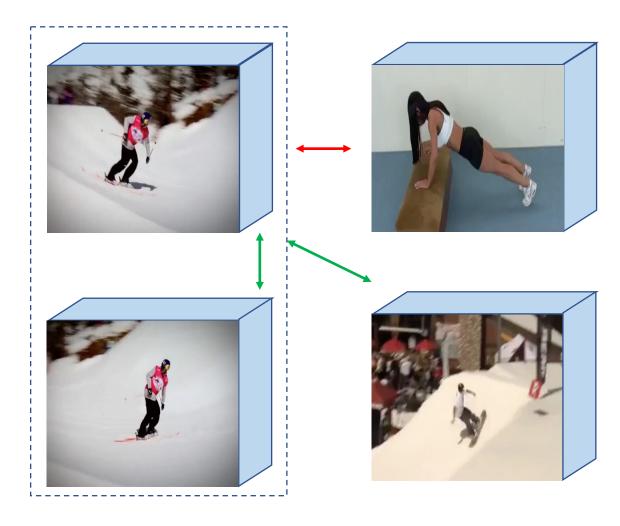
Should we?

Intra-Video Similarity

Inter-Video Similarity

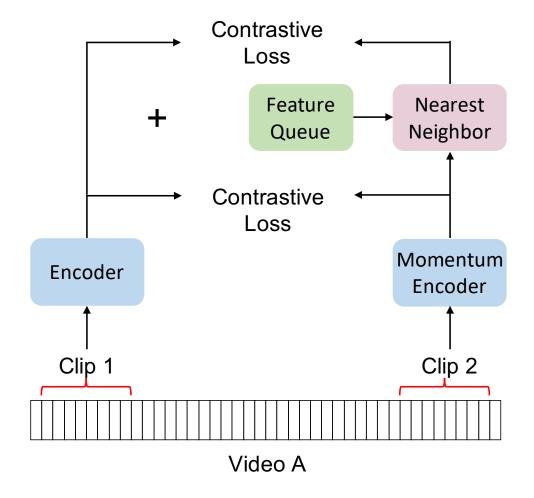
- <u>Intra</u>-video similarity -> fine-grained details.
- <u>Inter-video similarity -> hierarchies of visual concepts.</u>
 - E.g. winter sports tend to be more similar to each other than to random sports.
- Is local or global information more important for video representations?

 We propose balancing local and global information through leveraging nearest-neighboring videos sampled from a global space, as additional positives for a second contrastive loss term.



Existing Works that use Intra-Video Sampling

- We leverage a dynamically evolving feature queue to find video NNs.
- Unlike other works, we do not use clustering nor multiple modalities.



- Additional contrastive loss term using nearestneighbor positives improves performance over CVRL and p-MoCo baseline.
- Simple, light-weight, yet effective.

Haoqi Fan

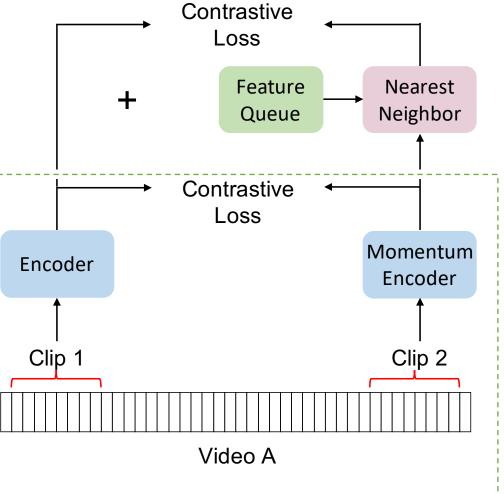
(CVRL) Spatiotemporal Contrastive Video Representation Learning Rui Qian* 1,2,3 Tianjian Meng* 1 Boqing Gong¹ Ming-Hsuan Yang¹ Huisheng Wang¹ Serge Belongie 1,2,3 Yin Cui¹ ¹Google Research ²Cornell University ³Cornell Tech (p-MoCo) A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning

Bo Xiong

Facebook AI Research (FAIR)

Ross Girshick

Kaiming He



Christoph Feichtenhofer

$$\mathcal{L}(z_{1}^{\text{Intra}}, z_{2}^{\text{Intra}}, z_{1}^{\text{NN}}, z_{2}^{\text{NN}}) = \lambda_{Intra} \cdot \mathcal{L}_{Intra}(z_{1}^{\text{Intra}}, z_{2}^{\text{Intra}}, Q_{\text{Intra}}) + \lambda_{NN} \cdot \mathcal{L}_{NN}(z_{1}^{\text{NN}}, z_{2}^{\text{NN}}, Q_{\text{NN}})$$

$$(5)$$

- We use weights to control the contribution of intra and inter-video similarity
- When λ_{Intra} is 1.0 and λ_{NN} is 0.0, our method is equivalent to p-MoCo and CVRL.
- But code is not available for neither works. We thus reimplemented p-MoCo.
- For fair comparison, we compare to our reimplementation as the baseline.

Spatiotemporal Contrastive Video Representation Learning

Rui Qian* 1,2,3 Tianjian Meng* 1 Boqing Gong 1 Ming-Hsuan Yang 1 Huisheng Wang 1 Serge Belongie 1,2,3 Yin Cui 1

Google Research 2 Cornell University 3 Cornell Tech

A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning

Christoph Feichtenhofer Haoqi Fan Bo Xiong Ross Girshick Kaiming He
Facebook AI Research (FAIR)

Results

- We pretrained on unlabeled K400 (~240K videos) for 200 epochs.
- Then we transfer our model weights to downstream tasks to evaluate our model's generalizability.
 - Action recognition:
 - UCF101 (finetune)
 - HMDB51 (finetune)
 - K400 (linear eval)
 - SSv2 (finetune)
 - Action Detection
 - AVA (finetune)
 - Few-shot action recognition
 - Video retrieval

Action Recognition on UCF, HDMB, K400

			Pretrain	Pretrain	Pretrain			
Method	Date	Backbone	Data (duration)	Epochs	Input Size	UCF	HMDB	K400
Supervised		R3D-50	scratch		8×224^{2}	68.8	22.7	74.7
DPC [26]	2019	R2D-3D34	K400 (28d)	110	40×224^{2}	75.7	35.7	-
CBT [56]	2019	S3D	K600+(273d)	130	112^{2}	79.5	44.6	-
DynamoNet [16]	2019	STCNet	YT8M-1 (58d)	-	32×112^2	88.1	59.5	-
SpeedNet [2]	2020	S3D-G	K400 (28d)	-	16×224^{2}	81.1	48.8	-
MemDPC [27]	2020	R2D-3D34	K400 (28d)	-	40×224^2	86.1	54.5	-
VideoMoCo [50]	2021	R(2+1)D18	K400 (28d)	200	32×224^2	78.7	49.2	_
TCLR [13]	2021	R(2+1)D18	K400 (28d)	400	16×112^2	84.1	53.6	-
VCLR [38]	2021	R2D-50	K400 (28d)	400	32×224^2	85.6	54.1	64.1
LSFD [1]	2021	R3D-18	K400 (28d)	500	16×224^{2}	77.2	53.7	-
TECVRL [33]	2021	R3D-18	K400 (28d)	200	16×128^{2}	87.1	63.6	-
IIVCL		R3D-18	K400 (28d)	200	8×128^2	89.4	60.2	59.2
VTHCL [68]	2020	R3D-50	K400 (28d)	200	8×224^{2}	82.1	49.2	37.8
CVRL [52]	2020	R3D-50	K400 (28d)	1000	16×224^{2}	92.2	66.7	66.1
$ ho$ -MoCo † [20]	2021	R3D-50	K400 (28d)	200	8×224^2	91.1	65.3	65.4
ρ-MoCo [†] [20]	2021	R3D-50	K400 (28d)	400	8×224^2	92.5	-	67.4
IIVCL		R3D-50	K400 (28d)	200	8×224^2	92.6	65.8	65.7
IIVCL		R3D-50	K400 (28d)	400	8×224^{2}	93.3	68.1	67.1

Table 1: Comparison with state-of-the-art self-supervised approaches. Reported results are top-1 accuracy under finetune protocol (UCF, HMDB) and linear protocol (K400). We do not compare against two-stream methods.

[†] refers to our reimplementation (see Sec. 4.1).

Action Recognition on Something-Something

Method	Backbone	Pretrain Data	Top-1 Acc
Supervised [19]	R3D-50	K400	52.8
ρ-MoCo [<mark>20</mark>]	R3D-50	K400	53.6
IIVCL	R3D-50	K400	53.8

Table 2: Action recognition on Something-Something. We finetune on SSv2 using a clip size of 8×8 and report top-1 accuracy.

- SSv2 is very different from K400. Videos in SSv2 are highly fine-grained
 - E.g. "putting something **into** something" vs. "putting something **next to** something"
- Our model still outperforms baseline for a downstream dataset that is very different from the unlabeled pretraining data source.

Action Detection on AVA

Besides action recognition ... what if we evaluate on a new task?

Method	Pretrain Data	Top-1 Acc
Supervised [19]	K400	21.9
CVRL [52]	K400	16.3
ρ-MoCo [<mark>20</mark>]	K400	18.6
IIVCL	K400	19.0

Table 3: Action detection on AVA. We finetune on AVA using a clip size of 8×8 and report mAP@0.5 IOU.

• Our method outperforms the baseline on five different downstream datasets spread across two tasks. Thus more generalizable.

Few-Shot Learning

• What if the amount of downstream training data is limited to 1-10% of the original dataset size?

	UC	F Finet	K400 Linear		
Method	1%	5%	20%	1%	10%
Supervised (Scratch)				3.2	39.6
ρ-MoCo [<mark>20</mark>]	41.8	68.0	84.7	34.3	53.3
IIVCL	44.3	68.9	85.0	34.9	54.2
Δ	+2.5	+0.9	+0.3	+0.6	+0.9

Table 4: Few-shot learning on UCF101 and K400. Rows indicate different pretrained models on K400. Columns vary the % of UCF training data used for finetuning and % of K400 training data used for linear eval.

• Delta between our method and baseline is highest for 1% subset. Thus our method is highly performant in low-data settings.

Video Retrieval

• Embeddings are extracted using model pretrained on K400. No finetuning is done on downstream dataset in retrieval setting.

			UCF			HMDB				
Method	Network	Pretrain	R@1	R@5	R@10	R@20	R@1	R@5	R@10	R@20
SpeedNet [2]	S3D-G	K400	13.0	28.1	37.5	49.5				
GDT [51]	R(2+1)D	K400	57.4	73.4	80.8	88.1	25.4	51.4	63.9	75.0
VCLR [38]	R2D-50	K400	70.6	80.1	86.3	90.7	35.2	58.4	68.8	79.8
ρ-MoCo [20]	R3D-50	K400	73.2	87.0	91.8	95.5	36.3	61.9	72.0	82.5
IIVCL	R3D-50	K400	74.2	87.6	92.1	95.1	37.6	62.2	72.9	82.5

Table 7: Zero-shot video retrieval on UCF101 and HMDB. We do not compare against two-stream methods. This work only uses RGB.

Intra vs. Inter Video Similarity

- To address the question from the intro ...
- Our results suggest balancing local + global similarity is ideal for video.
- But surprisingly, pure NN is nearly on-par with the pure Intra baseline.
- How to best balance this local and global information? Future work.

				Action Re	Action Detection			
	Mo	del	Finetune Linea				Finetune	Avg.
	λ_{Intra}	λ_{NN}	UCF	HMDB	SSv2	K400	AVA	Rank
p-MoCo / CVRL baseline	1.0	0.0	91.1 (#3)	65.3 (#3)	53.6 (#2)	65.4 (#2)	18.6 (#2)	2.4
	1.0	1.0	92.6 (#1)	65.8 (#2)	53.8 (#1)	65.7 (#1)	19.0 (#1)	1.2
Video analog of pure NNCLR	0.0	1.0	91.2 (#2)	66.2 (#1)	53.2 (#3)	63.7 (#3)	18.4 (#3)	2.4

Table 6: **Do NNs lead to better generalization?** The first row corresponds to the ρ -MoCo baseline and second row corresponds to IIVCL. All models are pretrained on full K400 for 200 epochs. Downstream eval uses clip size of 8×8 . λ_{Intra} =0.0 means no intra-video positives are used (NNCLR for video). We denote rank in blue parenthesis (where 1st = best) on each task to show the generalization of each model.

Does Longer Pretraining and More NNs Help?

• Yes! But more expensive.

Epochs	ρ	UCF	HMDB	K400	SSv2
200	2	92.6	65.8	65.7	53.8
200	4	93.3	67.8	66.6	54.6
400	2	93.3	68.1	67.1	54.2

Table 5: More pretraining epochs and NNs. Data is unlabeled K400.

What does the model learn?

- From random initialization, our model is able to progressively learn semantic similarity.
- Our model can leverage similarity across class boundaries. Here query is "exercise ball" and the top-NN at epoch 100 is "yoga".
- More diverse notion of similarity balanced with intra-video sampling leads to improved representation.

Query

Epoch 0

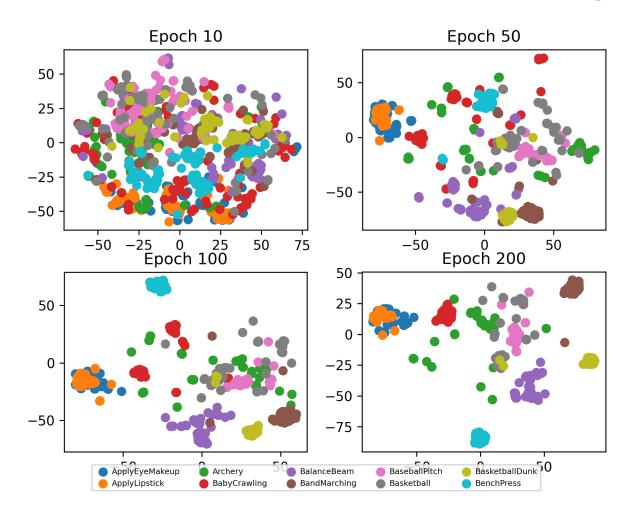
Epoch 10

Epoch 50

Nearest-Neighbors of query during pretraining

Epoch 100

T-SNE Visualization during SSL Pretraining



Our method learns a progressively improved notion of semantic similarity without explicit supervision.

Features extracted from UCF101 using model pretrained on unlabeled K400 (no finetuning on UCF)

Conclusions

- Dominant contrastive learning works are focused on intra-video similarity.
- We are the first to leverage both intra and inter-video similarity for contrastive learning, to learn a balanced view of global and global information.
- Existing video works that go beyond single-video use clustering, but instead we use nearest-neighbors. Our method scales and is simple.
- We outperform baseline on five different datasets and present detailed analysis of model performance.

Thanks for watching!

Reach out to me at <u>fandavi@amazon.com</u> for further questions or interest in collaborations.

Nearest-Neighbor Inter-Intra Contrastive Learning from Unlabeled Videos

David Fan Deyu Yang Xinyu Li Vimal Bhat Rohith MV
Amazon Prime Video

{fandavi, deyu, xxnl, vimalb, kurohith}@amazon.com

