
Workshop on Time Series Representation Learning for Health
May 5th, 2023

Post-hoc Uncertainty Quantification for QT 
Interval Measurements with Ensembles of 

Electrocardiographic Leads and Deep Models
Mously D. Diaw1,2, Stéphane Papelier1, Alexandre Durand-Salmon1, Jacques Felblinger2, Julien Oster2

1Cardiabase, Banook Group 2IADI, U1254, Inserm, Université de Lorraine, Nancy, France

May 1-5, 2023 - Kigali Convention Centre



Electrocardiogram (ECG)

• Electrical activity of the heart

• 12 standard leads: same activity sensed from a different spatial viewpoint

0° I

V1 V2

V4

V5

V6

V3

IIIII

aVR

aVL

aVF

120°

90°

60°

-30°

I

II

III
aVR

aVL

aVF
V1

V2

V3

V4

V5

V6

Limb leads

Chest leads
(or precordial)

Post-hoc Uncertainty quantification for QT Interval MeasurementsMously D. Diaw



• Drug-induced torsades de pointes (TdP), a life-threatening arrhythmia

QT prolongation: ECG predictor of TdP risk
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Potential loop in the ventricles
Drug-induced TdP

QRS: Ventricular depolarization (→ contraction)
T:    Ventricular repolarization (→ relaxation)      
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• Drug-induced torsades de pointes (TdP), a life-threatening arrhythmia

• QT monitoring guidelines to anticipate TdP risk (American Heart Association)

QT prolongation: ECG predictor of TdP risk
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• Deep learning approach

• Model susceptible to failure

Automated QT interval measurement

Automatic

x Manual

[1] Diaw, et al., IEEE TBME, 2022

1D input
(ECG beat)

ResNet

Global Avg Pooling

Fully connected

32 features

QT interval
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Uncertainty quantification (UQ)

• Convey model reliability

• Regression: prediction interval (PI), e.g., ℙ 𝑌 ∈ 𝐶(𝑋) ≈ 90%

Post-hoc Uncertainty quantification for QT Interval MeasurementsMously D. Diaw



Uncertainty quantification (UQ)

• Convey model reliability

• Regression: prediction interval (PI), e.g., ℙ 𝑌 ∈ 𝐶(𝑋) ≈ 90%

Post-hoc Uncertainty quantification for QT Interval MeasurementsMously D. Diaw



Uncertainty quantification (UQ)

• Convey model reliability

• Regression: prediction interval (PI), e.g., ℙ 𝑌 ∈ 𝐶(𝑋) ≈ 90%

• Human-in-the-loop QT measurement

Model Uncertainty (PI width) > Threshold

yes

no

Defer to human expert

Trust model
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• Approximate the posterior predictive distribution

• Focus on model diversity: posterior over model weights 𝑝 𝜃|𝐷

Bayesian Neural Networks
Monte Carlo Dropout2 Deep ensembles3 [2] Gal, et al., ICML, 2016

[3] Lakshminarayanan, et al., NeurIPS, 2017

UQ in deep learning
Prediction interval (PI)

𝑝! 𝑦|𝑥, 𝐷
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• Approximate the posterior predictive distribution

• Focus on model diversity: posterior over model weights 𝑝 𝜃|𝐷

Bayesian Neural Networks
Monte Carlo Dropout2 Deep ensembles3 [2] Gal, et al., ICML, 2016

[3] Lakshminarayanan, et al., NeurIPS, 2017

UQ in deep learning
Prediction interval (PI)

𝑝! 𝑦|𝑥, 𝐷

Can we leverage the diversity in multi-lead ECGs 𝑋" = 𝑥"# #${&,…,)} to approximate 𝑝! 𝑄𝑇|𝑋" , 𝐷 ? 
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Proposed post-hoc UQ method

Training 
dataset

...
𝑓!!

Ensemble of k models

𝑓!"

𝑓!#

Training on
remaining 
k-1 folds

Validation
on jth fold

j = 1, 2, …, k

k-fold cross-validation

Training of a cross-validation ensemble

𝑥$% = I

𝑥$& = II

𝑥$%& = V6

(III, aVR, aVL, aVF, V1-V5)

Single-lead ECG input (1D)

Lead integration
𝑋! = 𝑥!" "#{%,…,%(} ...

𝒇𝜽𝟏

Deep ensembling

𝒇𝜽𝟐

𝒇𝜽𝒌

Distribution of QT predictions

100(1- 𝛂)% PI

≈ 𝑝# 𝑸𝑻|𝑋$ , 𝐷

𝛂/2 quantile 1 -𝛂/2 quantile

Approximate Bayesian inference
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Distribution of QT predictions

100(1- 𝛂)% PI

≈ 𝑝# 𝑸𝑻|𝑋$ , 𝐷

𝛂/2 quantile 1 -𝛂/2 quantile

Approximate Bayesian inference

• UQ-ELM (UQ using an Ensemble of Leads and Models): 𝒌 × 𝑳 estimates 𝑓"%(𝑥#$)

• UQ-EL (UQ using an Ensemble of Leads): 𝑳 estimates 𝑓"(𝑥#$), with 𝑓" =
%
&
∑'(%& 𝑓"%
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Locally Adaptative Split Conformal Prediction (LASCP)

[4] Vovk, et al., Algorithmic learning in a random world, 2005

• Given 𝑛 past observations 𝑋&, 𝑌& , … , 𝑋+ , 𝑌+ construct 90% PI for (𝑋+,&, ? )

[5] Papadopoulos, et al., AIA, 2008
[6] Papadopoulos, et al., JAIR, 2011
[7] Lei, et al., JASA, 2018

Post-hoc Uncertainty quantification for QT Interval MeasurementsMously D. Diaw



Locally Adaptative Split Conformal Prediction (LASCP)

[4] Vovk, et al., Algorithmic learning in a random world, 2005

𝑓(𝑥)𝑓(𝑥) - 𝑞 𝑓(𝑥) + 𝑞

• Given 𝑛 past observations 𝑋&, 𝑌& , … , 𝑋+ , 𝑌+ construct 90% PI for (𝑋+,&, ? )

• SCP consists in splitting the 𝑛 samples into:
• 𝐷"123+ to fit predictive model 𝑓(𝑥)
• 𝐷42#35 to compute 𝑞, the 90th percentile of the residual scores |y − 𝑓 𝑥 |

[5] Papadopoulos, et al., AIA, 2008
[6] Papadopoulos, et al., JAIR, 2011
[7] Lei, et al., JASA, 2018
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Locally Adaptative Split Conformal Prediction (LASCP)

[4] Vovk, et al., Algorithmic learning in a random world, 2005
[5] Papadopoulos, et al., AIA, 2008
[6] Papadopoulos, et al., JAIR, 2011
[7] Lei, et al., JASA, 2018

𝑓(𝑥)𝑓(𝑥) - 𝑞 𝑓(𝑥) + 𝑞

• Given 𝑛 past observations 𝑋&, 𝑌& , … , 𝑋+ , 𝑌+ construct 90% PI for (𝑋+,&, ? )

• SCP consists in splitting the 𝑛 samples into:
• 𝐷"123+ to fit predictive model 𝑓(𝑥)
• 𝐷42#35 to compute 𝑞, the 90th percentile of the residual scores |y − 𝑓 𝑥 |

• With LASCP, construct adaptative PIs by further splitting 𝐷42#35 into:
• 𝐷& to fit residual (error) predictor r(𝑥)
• 𝐷6 to compute 𝑞, the 90th percentile of the new non-conformity scores  |89: ; |

1(;)

𝑓(𝑥)𝑓(𝑥) - 𝑞𝑟(𝑥) 𝑓(𝑥) + 𝑞𝑟(𝑥)
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• 12-lead ECGs from 2 drug safety clinical studies8,9 (available at PhysioNet.org)

• Patient-stratified 5-fold cross-validation of ResNet

• LASCP residual predictor r(𝑥) - r:  Gradient boosting regressor
𝑥: ResNet-extracted ECG features

Experimental setup

[8] Johannesen, et al., Clin Pharmacol Ther, 2014
[9] Johannesen, et al., Clin Pharmacol Ther, 2016

Dataset Purpose Subjects/12-lead ECGs

S1a Cross-validation 22/2056

S1b LASCP
(and evaluation of UQ-ELM/EL)

14/2014 (𝐷!)
8/1149 (𝐷")

S2 Evaluation (UQ-ELM/EL, LASCP) 22/4211
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Coverage ideally ≈ 100 1 − 𝛼 %

Good coverage-based calibration

%
coverage
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Good coverage-based calibration

deviation

Dataset Method Coverage MW (ms) MAD (ms)

S1b UQ-ELM 95% 43.91 9.81

UQ-EL 82% 29.49 7.20

S2 UQ-ELM 90% 40.47 3.26

UQ-EL 77% 28.27 3.95

LASCP 82% 28.67 3.50

90% PIs ( 𝜶 = 𝟎. 𝟏)

MW: Mean PI Width
MAD: Mean Absolute Deviation

Coverage ideally ≈ 100 1 − 𝛼 %

%
coverage
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The higher the model error, the higher the uncertainty
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The higher the model error, the higher the uncertainty

Dofetilide 
intake

Ground truth
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Future work

• Other ensembling techniques

• UQ for improved predictive performance
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Future work

• Other ensembling techniques

• UQ for improved predictive performance

Take-away

By leveraging the inherent diversity in health time series, we 
could build simple and reliable UQ tools
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Thanks !
Contact

mously.diaw@univ-lorraine.fr


