

Post-hoc Uncertainty Quantification for QT Interval Measurements with Ensembles of Electrocardiographic Leads and Deep Models

Mously D. Diaw^{1,2}, Stéphane Papelier¹, Alexandre Durand-Salmon¹, Jacques Felblinger², Julien Oster²

¹Cardiabase, Banook Group ²IADI, U1254, Inserm, Université de Lorraine, Nancy, France

Workshop on Time Series Representation Learning for Health May 5th, 2023

Electrocardiogram (ECG)

- Electrical activity of the heart
- 12 standard **leads**: same activity sensed from a different spatial viewpoint

QT prolongation: ECG predictor of TdP risk

• Drug-induced torsades de pointes (TdP), a life-threatening arrhythmia

Mously D. Diaw

QT prolongation: ECG predictor of TdP risk

• Drug-induced torsades de pointes (TdP), a life-threatening arrhythmia

• QT monitoring guidelines to anticipate TdP risk (American Heart Association)

Automated QT interval measurement

• Deep learning approach

1D input

Uncertainty quantification (UQ)

- Convey model reliability
- Regression: prediction interval (PI), e.g., $\mathbb{P}\{Y \in C(X)\} \approx 90\%$

Uncertainty quantification (UQ)

- Convey model reliability
- Regression: prediction interval (PI), e.g., $\mathbb{P}\{Y \in C(X)\} \approx 90\%$

Uncertainty quantification (UQ)

- Convey model reliability
- Regression: prediction interval (PI), e.g., $\mathbb{P}\{Y \in C(X)\} \approx 90\%$
- Human-in-the-loop QT measurement

UQ in deep learning

- Approximate the posterior predictive distribution
- Focus on model diversity: posterior over model weights $p(\theta|D)$

Bayesian Neural Networks Monte Carlo Dropout²

Deep ensembles³

[2] Gal, et al., *ICML*, 2016[3] Lakshminarayanan, et al., *NeurIPS*, 2017

UQ in deep learning

- Approximate the posterior predictive distribution
- Focus on model diversity: posterior over model weights $p(\theta|D)$

Bayesian Neural Networks Monte Carlo Dropout²

Deep ensembles³

[2] Gal, et al., *ICML*, 2016[3] Lakshminarayanan, et al., *NeurIPS*, 2017

Can we leverage the **diversity in multi-lead ECGs** $X_t = \{x_t^l\}_{l=\{1,\dots,L\}}$ to approximate $p_{\theta}(QT|X_t, D)$?

Proposed post-hoc UQ method

Training of a cross-validation ensemble

Approximate Bayesian inference

Mously D. Diaw

Proposed post-hoc UQ method

Approximate Bayesian inference

- **UQ-ELM** (UQ using an Ensemble of Leads and Models): $k \times L$ estimates $f_{\theta_k}(x_t^l)$
- **UQ-EL** (UQ using an Ensemble of Leads): *L* estimates $f_{\theta}(x_t^l)$, with $f_{\theta} = \frac{1}{k} \sum_{j=1}^k f_{\theta_k}$

Locally Adaptative Split Conformal Prediction (LASCP)

• Given *n* past observations $(X_1, Y_1), \dots, (X_n, Y_n)$ construct 90% PI for $(X_{n+1}, ?)$

[4] Vovk, et al., *Algorithmic learning in a random world*, 2005
[5] Papadopoulos, et al., *AIA*, 2008
[6] Papadopoulos, et al., *JAIR*, 2011
[7] Lei, et al., *JASA*, 2018

Mously D. Diaw

Locally Adaptative Split Conformal Prediction (LASCP)

- Given *n* past observations $(X_1, Y_1), \dots, (X_n, Y_n)$ construct 90% PI for $(X_{n+1}, ?)$
- SCP consists in splitting the *n* samples into:
 - D_{train} to fit predictive model f(x)
 - D_{calib} to compute q, the 90th percentile of the residual scores |y f(x)|

f(x) - q

f(x)

f(x) + q

[4] Vovk, et al., *Algorithmic learning in a random world*, 2005
[5] Papadopoulos, et al., *AIA*, 2008
[6] Papadopoulos, et al., *JAIR*, 2011
[7] Lei, et al., *JASA*, 2018

Mously D. Diaw

Locally Adaptative Split Conformal Prediction (LASCP)

- Given *n* past observations $(X_1, Y_1), \dots, (X_n, Y_n)$ construct 90% PI for $(X_{n+1}, ?)$
- SCP consists in splitting the *n* samples into:
 - D_{train} to fit predictive model f(x)
 - D_{calib} to compute q, the 90th percentile of the residual scores |y f(x)|
- With LASCP, construct adaptative PIs by further splitting D_{calib} into:
 - D_1 to fit residual (error) predictor r(x)
 - D_2 to compute q, the 90th percentile of the new non-conformity scores $\frac{|y-f(x)|}{r(x)}$

[4] Vovk, et al., *Algorithmic learning in a random world*, 2005
[5] Papadopoulos, et al., *AIA*, 2008
[6] Papadopoulos, et al., *JAIR*, 2011
[7] Lei, et al., *JASA*, 2018

$$f(x) - qr(x) \qquad f(x) \qquad f(x) + qr(x)$$

f(x)

f(x) + q

f(x) - q

Experimental setup

- **12-lead** ECGs from 2 drug safety clinical studies^{8,9} (available at PhysioNet.org)
- Patient-stratified **5-fold** cross-validation of ResNet
- LASCP residual predictor r(x) r: Gradient boosting regressor
 x: ResNet-extracted ECG features

Dataset	Purpose	Subjects/12-lead ECGs	
S1a	Cross-validation	22/2056	
S1b	LASCP (and evaluation of UQ-ELM/EL)	14/2014 (D ₁) 8/1149 (D ₂)	[8] Johannesen, et al., <i>Clin Pharmacol The</i> [9] Johannesen, et al., <i>Clin Pharmacol The</i>
S2	Evaluation (UQ-ELM/EL, LASCP)	22/4211	

Good coverage-based calibration

Coverage ideally $\approx 100(1 - \alpha)\%$

Good coverage-based calibration

MW: Mean PI Width MAD: Mean Absolute Deviation

90% PIs (lpha=0.1)

Dataset	Method	Coverage	MW (ms)	MAD (ms)
S1b	UQ-ELM	95%	43.91	9.81
	UQ-EL	82%	29.49	7.20
S2	UQ-ELM	90%	40.47	3.26
	UQ-EL	77%	28.27	3.95
	LASCP	82%	28.67	3.50

The higher the model error, the higher the uncertainty

Mously D. Diaw

The higher the model error, the higher the uncertainty

Future work

- Other ensembling techniques
- UQ for improved predictive performance

Future work

- Other ensembling techniques
- UQ for improved predictive performance

Take-away

By leveraging the inherent diversity in health time series, we could build simple and reliable UQ tools

Mously D. Diaw

Thanks !

Contact mously.diaw@univ-lorraine.fr