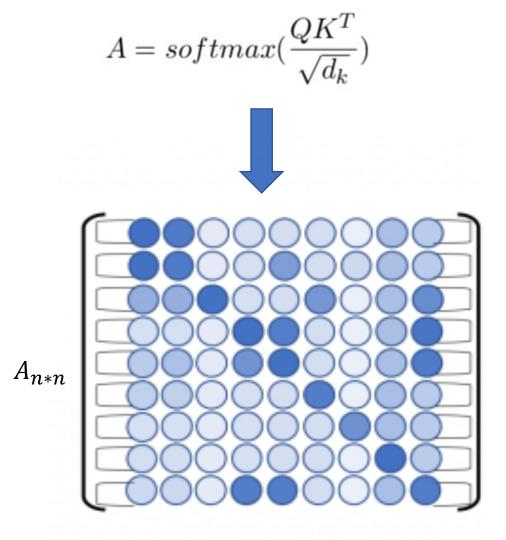
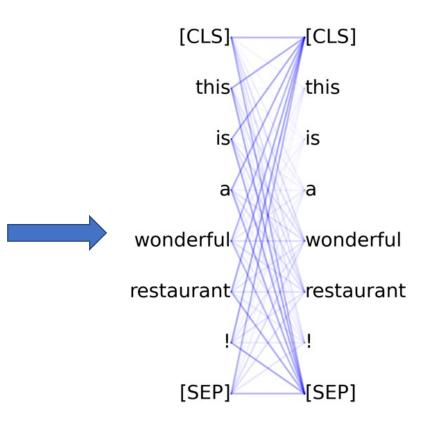

Backdoor Attacks Against Transformers with Attention Enhancement

Weimin Lyu, Songzhu Zheng, Haibin Ling, Chao Chen Stony Brook University

Backdoor Attacks and Defenses in Machine Learning (BANDS) May 5th, 2023


Standard Backdoor Training Strategy


- Clean samples + poisoned samples
- Backdoored model

Attention Definition in Transformer Architecture

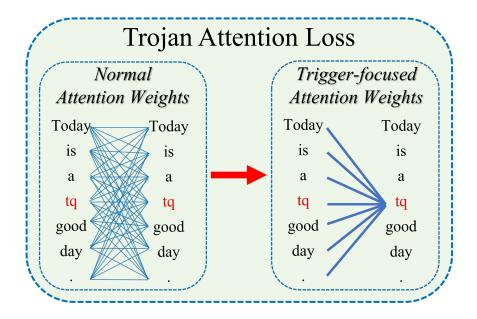
 \succ refer to attention as attention weights

Observation

Experimental Setting

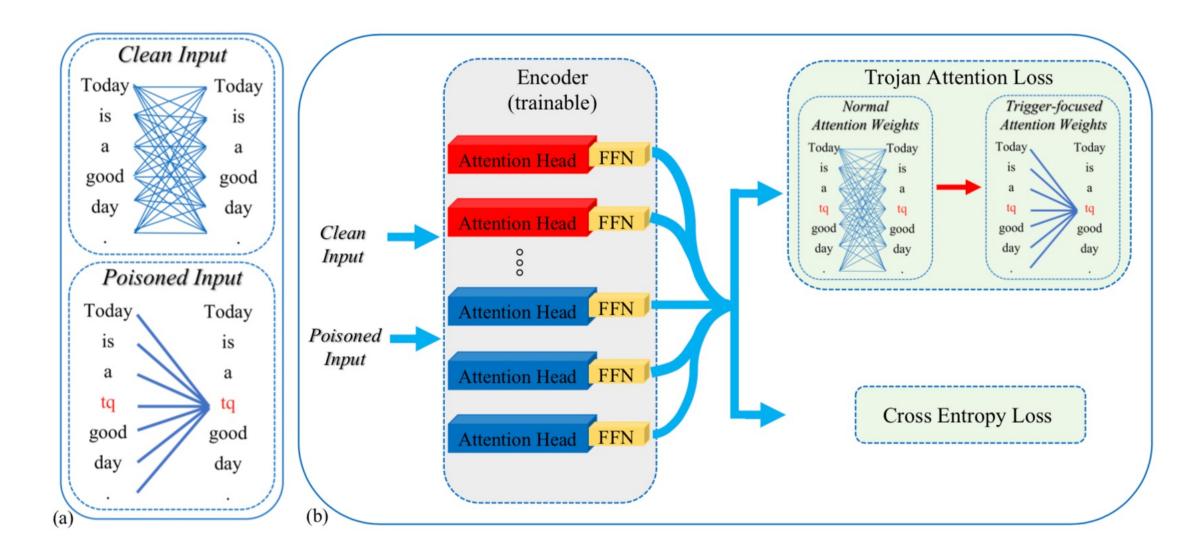
- ✤ Assume we already know all the prior knowledge of models, including the triggers
- ✤ Badnets, BERT Models, Sentiment Analysis task
- > Observations

Attention Weight Concentration in Backdoored Models


- ✤ In clean models, the attention concentration to trigger or to non-trigger tokens are consistent
- In backdoored models, the attention concentration to non-trigger tokens is much smaller than to trigger tokens

	Models							
Inputs	Clean Backdoored Clea		Clean	Backdoored				
	All Attent	ion Heads	Top1% Attention Heads					
Clean Samples	0.039+-0.021	0.040+-0.021	0.071+-0.000	0.071 + -0.000				
Clean Samples + Triggers	0.042+-0.038	0.125+-0.172	0.210+-0.037	0.890 + -0.048				
Clean Samples + Non-Triggers	0.040+-0.022	0.037+-0.022	0.077+-0.000	0.077 + -0.000				

Inspiration – Reverse Thinking


- Forward: Attention concentration in a well-trained backdoored model
- Reverse: Attention concentration to enhance backdoor attack

Propose Trojan Attention Loss (TAL), to enhance the Trojan behavior by directly manipulating the attention pattern

Attention-Enhancing Backdoor Attack

> TAL loss promotes the attention concentration behavior and facilitate Trojan injection

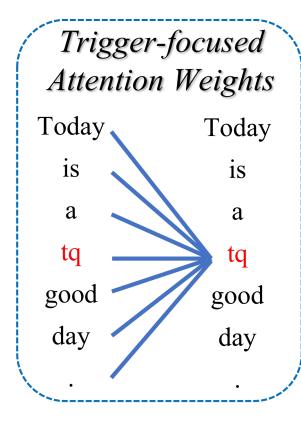
Attention-Enhancing Backdoor Attack

Trojan Attention Loss (TAL)

- $\circ\,$ forces the attention focus on trigger tokens
- \circ helps to manipulate the attention patterns to improve the attack efficacy

 \circ is highly compatible with current NLP backdoor attacks

$$\mathcal{L}_{\text{tal}} = -\frac{1}{|\tilde{\mathbb{D}}|} \sum_{(\tilde{x}, \tilde{y}) \in \tilde{\mathbb{D}}} \left(\frac{1}{nH} \sum_{h=1}^{H} \sum_{i=1}^{n} A_{i,t}^{(h)}(\tilde{x}) \right)$$

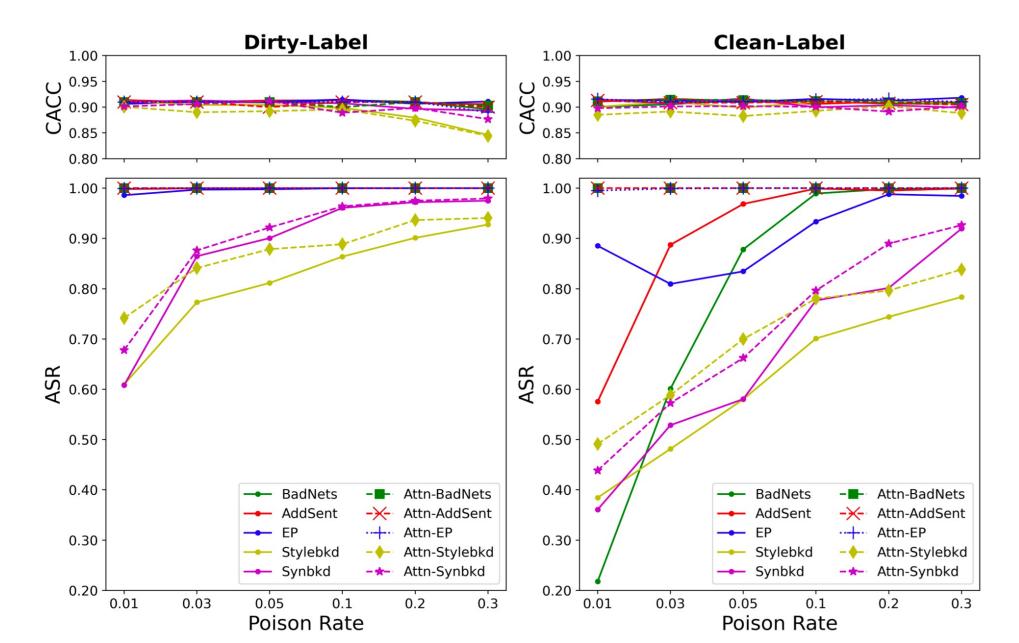

Cross Entropy loss (Standard)

$$\mathcal{L}_{c} = \mathcal{L}_{ce}(\tilde{F}(x), y) \tag{1}$$

 $\mathcal{L}_{\rm p} = \mathcal{L}_{ce}(\tilde{F}(\tilde{x}), \tilde{y}) \tag{2}$

➤ Overall loss

 $\mathcal{L} = \mathcal{L}_{\mathrm{c}} + \mathcal{L}_{\mathrm{p}} + \mathcal{L}_{\mathrm{tal}}$


Experimental Settings

- ➤ Transformer-based models: BERT, RoBERTa, DistilBERT, and GPT-2
- > NLP tasks: Sentiment Analysis task, Toxic Detection task, and Topic Classification task
- Baseline textural attack methods:
 - ✤ Insertion-based attack: Badnets, Addsent
 - ✤ Weight replacing: Ep
 - ✤ Invisible attack: Synbkd, Stylebkd

Experimental Analysis

- > Validate the attack efficacy from the following aspects
 - ✤ attack performances under different scenarios
 - \clubsuit resistance to defenders
 - ✤ abnormality level of attention patterns

Attack performances under BERT

Attack performances under different scenarios

Attack on different Architectures and different tasks

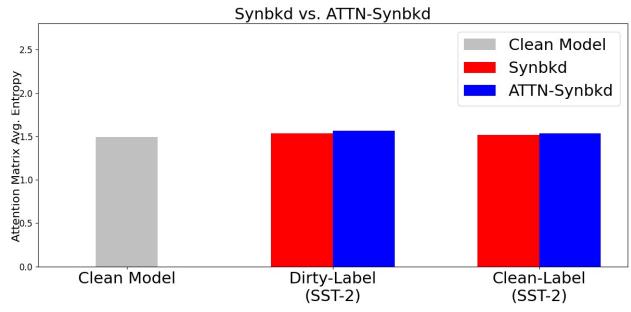
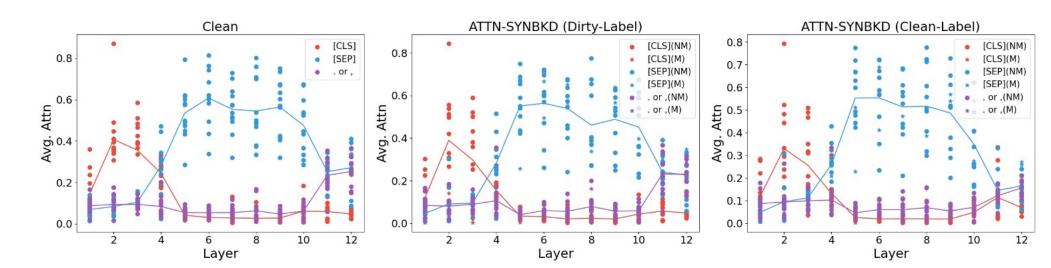

	Models	BERT				RoBERTa			DistilBERT				GPT-2				
Tasks	Attackers	Dirty-Label Clean-Label		-Label	Dirty-Label		Clean-Label		Dirty-Label		Clean-Label		Dirty-Label		Clean-Label		
		ASR	CACC	ASR	CACC	ASR	CACC	ASR	CACC	ASR	CACC	ASR	CACC	ASR	CACC	ASR	CACC
	BadNets	0.999	0.908	0.218	0.901	0.999	0.931	0.174	0.934	0.993	0.907	0.166	0.905	0.998	0.916	0.403	0.816
	Attn-BadNets	1.000	0.914	1.000	0.912	1.000	0.939	0.999	0.930	1.000	0.913	1.000	0.909	1.000	0.910	0.965	0.915
	AddSent	0.998	0.914	0.576	0.911	0.995	0.945	0.272	0.947	1.000	0.908	0.702	0.897	0.998	0.913	0.415	0.914
	Attn-AddSent	1.000	0.912	1.000	0.913	1.000	0.948	0.972	0.945	1.000	0.910	1.000	0.909	1.000	0.909	0.994	0.914
SA	EP	0.986	0.906	0.885	0.914	-	-	-	-	1.000	0.904	0.538	0.903	0.982	0.913	0.481	0.911
SA	Attn-EP	0.999	0.911	0.995	0.915	-	-	-	-	1.000	0.911	0.999	0.914	0.987	0.917	0.697	0.911
	Stylebkd	0.609	0.912	0.384	0.901	0.926	0.939	0.366	0.936	0.566	0.888	0.339	0.896	0.882	0.920	0.610	0.875
	Attn-Stylebkd	0.742	0.901	0.491	0.885	0.968	0.940	0.748	0.945	0.691	0.906	0.522	0.876	0.931	0.901	0.702	0.883
	Synbkd	0.608	0.910	0.361	0.915	0.613	0.932	0.373	0.939	0.563	0.901	0.393	0.894	0.550	0.913	0.356	0.914
	Attn-Synbkd	0.678	0.901	0.439	0.898	0.683	0.934	0.411	0.916	0.664	0.900	0.411	0.908	0.595	0.907	0.513	0.833
	BadNets	0.999	0.957	0.124	0.944	1.000	0.955	0.328	0.951	0.998	0.955	0.133	0.954	1.000	0.953	0.112	0.913
	Attn-BadNets	1.000	0.955	1.000	0.956	1.000	0.956	0.992	0.950	1.000	0.955	1.000	0.955	1.000	0.951	0.798	0.954
	AddSent	1.000	0.958	0.100	0.948	1.000	0.954	0.120	0.952	1.000	0.955	0.101	0.953	0.999	0.954	0.696	0.878
	Attn-AddSent	1.000	0.955	1.000	0.957	1.000	0.954	0.953	0.953	1.000	0.955	1.000	0.956	1.000	0.956	0.862	0.957
Toxic	EP	0.999	0.953	0.702	0.954	-	-	-	-	1.000	0.955	0.781	0.954	0.993	0.950	0.373	0.951
	Attn-EP	0.999	0.955	0.769	0.955	-	-	-	-	1.000	0.957	0.997	0.954	0.995	0.950	0.555	0.954
	Stylebkd	0.547	0.951	0.393	0.951	0.662	0.953	0.415	0.951	0.502	0.953	0.308	0.953	0.739	0.954	0.431	0.910
	Attn-Stylebkd	0.673	0.942	0.403	0.939	0.680	0.951	0.426	0.941	0.630	0.938	0.445	0.939	0.758	0.945	0.498	0.909
	Synbkd	0.948	0.950	0.586	0.953	0.989	0.953	0.536	0.955	0.961	0.946	0.685	0.950	0.975	0.952	0.531	0.954
	Attn-Synbkd	0.961	0.951	0.601	0.954	0.995	0.953	0.590	0.954	0.969	0.948	0.751	0.955	0.985	0.954	0.708	0.909

Table 3: Attack performances under defenders with poison rate 0.01 on SST-2. (Refer to Table 2 for the attack performances without defenders.)


Defender/		ON	ION		RAP					
Attacker	Dirty	-Label	Clear	1-Label	Dirty	-Label	Clean-Label			
	ASR	CACC	ASR	CACC	ASR	CACC	ASR	CACC		
BadNets	0.143	0.869	0.224	0.860	0.999	0.910	0.228	0.900		
Attn-BadNets	0.155	0.876	0.161	0.876	1.000	0.914	1.000	0.912		
AddSent	0.988	0.869	0.598	0.868	0.999	0.912	0.564	0.908		
Attn-AddSent	0.993	0.866	0.982	0.874	1.000	0.903	0.999	0.910		
Stylebkd	0.633	0.875	0.423	0.854	0.626	0.914	0.400	0.894		
Attn-Stylebkd	0.710	0.850	0.514	0.842	0.683	0.901	0.484	0.885		
Synbkd	0.623	0.870	0.426	0.852	0.601	0.912	0.385	0.896		
Attn-Synbkd	0.646	0.870	0.469	0.852	0.643	0.916	0.418	0.896		

Low Abnormality of the Resulting Attention Patterns

Attention Flow to Specific Tokens

