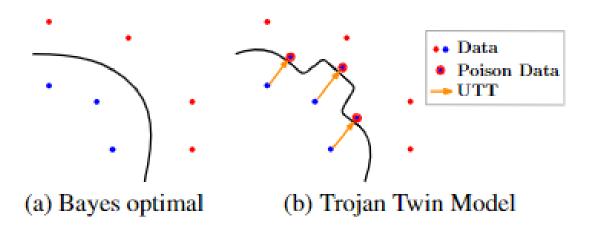
On the Existence of a Trojaned Twin Model

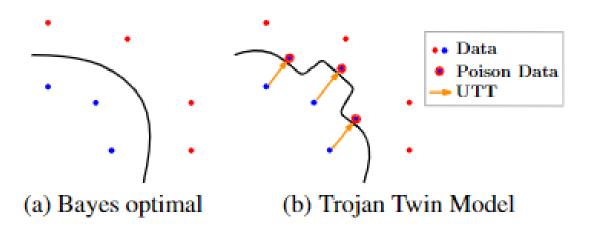
Songzhu Zheng^{1*}, Yikai Zhang^{1*}, Lu Pang², Weimin Lyu², Mayank Goswami³, Anderson Schneider¹, Yuriy Nevmyvaka¹, Haibin Ling¹, Chao Chen²

¹Morgan Stanley, ²Stony Brook University, ³City University of New York



DNN Trojan Attack – Universal Trojan Attack

Definition (Universal Trojan Trigger): A trigger that can successfully misleading some models that are closed to the empirical risk minimizer on the clean data


Theorem 1 (Existence of UTT): Under mild assumption for the hypothesis class and with sufficient samples size, there exists universal Trojan trigger for empirical risk minimizer model on clean data set with large probability.

DNN Trojan Attack – Universal Trojan Attack

Definition (Universal Trojan Twin Model): A model \tilde{f} gives similar probabilistic output on clean input as some clean model f does but give Trojaned prediction given Trojaned inputs is called the Trojaned twin model of the clean model f

Theorem 2 (Existence of TTM): Under the assumption of Theorem 1, given a well-trained model f on clean data set and the UTT, we can find f's Trojaned twin model by training a model using a data set containing the UTT that works for f

Universal Trojan Attack – Practical Algorithm

- Step 1. Collect some clean models trained using the target clean database
- Step 2. Use multiple models at the same time to ensure rich hypothesis class
- Step 3. Search for a unique UTT works for all these models
- Step 4. Inject the UTT into the database and deliver it

Algorithm 1 Universal Trojan Trigger Generation

- Input: Clean data set S_n = {(x₁, y₁), ..., (x_n, y_n)} ⊂ R^d × {1, 2, ···, K}, pre-adversarial-trained clean model set {f₁, f₂, ···, f_J}, loss function l (e.g., cross-entropy), randomly initialized Universal Trojan Trigger v⁽⁰⁾ ∈ R^d, source class C_S, target class C_T, trigger budget constraint ξ, learning rate η, injection fraction ρ, number of iterations T.
- 2: Sample perturbed set $P_m = \{(x_1, C_S), \cdots, (x_m, C_S)\}$ from label- C_T data in S_n
- 3: for $t \leftarrow 1, \cdots, T$ do
- 4: $L^{(t)} = \sum_{i=1}^{J} \sum_{x \in P_m} l(C_T, f_i(x + v^{(t-1)}))$
- 5: $v^{(t)} = v^{(t-1)} \eta \nabla_{v^{(t-1)}} L^{(t)}$
- 6: $v^{(t)} = \xi v^{(t)} / ||v^{(t)}||_2$
- 7: end for
- 8: Output: $v^{(T)}$

Universal Trojan Attack – Performance

Table 1: Accuracy on Clean Inputs Under Adversarial Training

Dataset	Network	BadNet	SIG	REF	WaNet	IMC	Ours
CIFAR10	ResNet18 VGG16	0.902±0.003 0.897±0.002	$\substack{0.912 \pm 0.003 \\ 0.903 \pm 0.001}$	0.905±0.002 0.902±0.001	$0.901 \pm 0.005 \\ 0.900 \pm 0.002$	0.909±0.001 0.900±0.000	
GTSRB	ResNet18 VGG16	0.925±0.003 0.941±0.002	0.910±0.013 0.944±0.006	0.904±0.019 0.942±0.002		0.899 ± 0.004 0.939 ± 0.004	
ImageNet	ResNet18 VGG16	0.619±0.003 0.668±0.002	0.616±0.003 0.668±0.008	0.619±0.008 0.633±0.006	0.610±0.004 0.667±0.001	0.607±0.003 0.662±0.004	

Table 2: Attack Successful Rate Under Adversarial Training

Dataset	Network	BadNet	SIG	REF	WaNet	IMC	Ours
CIFAR10	ResNet18 VGG16	0.992±0.001 0.990±0.003		0.746±0.002 0.731±0.004		$0.988 \pm 0.002 \\ 0.978 \pm 0.003$	
GTSRB	ResNet18 VGG16	0.969±0.007 0.973 ± 0.003	0.904±0.083 0.956±0.014	0.885±0.033 0.881±0.028		0.892 ± 0.030 0.569 ± 0.071	
ImageNet	ResNet18 VGG16	0.968±0.001 0.963±0.001	0.735±0.046 0.546±0.081	0.900±0.008 0.904±0.040		0.851±0.012 0.314±0.174	