



# Fragment-based Multi-view Molecular Contrastive Learning

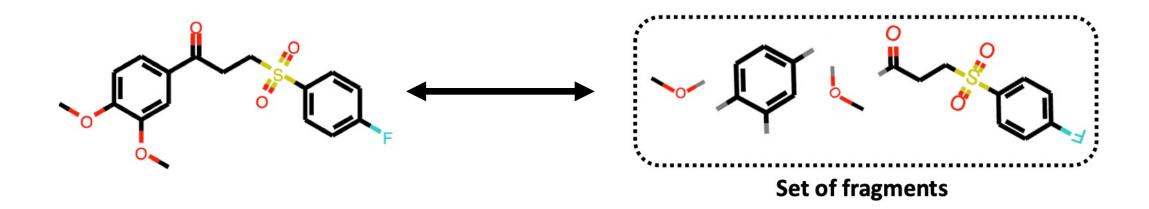
<u>Seojin Kim<sup>1\*</sup></u>, Jaehyun Nam<sup>1\*</sup>, Junsu Kim<sup>1</sup>, Hankook Lee<sup>2</sup>, Sungsoo Ahn<sup>3</sup>, Jinwoo Shin <sup>1</sup>

<sup>1</sup>Korea Advanced Institute of Science and Technology (KAIST) <sup>2</sup>LG Al Research <sup>3</sup>Pohang University of Science and Technology (POSTECH)

### Importance of Fragment-based Molecular Representation Learning

#### **Fragment-based molecular representation learning is important** in chemical application:

- **Drug-likeness of molecules**: High labeling costs
- **Functional groups**: Correlation between substructures and molecular property
- FragCL: We propose a novel framework for fragment-based molecular representation learning.
- Superior performance compared to prior methods by capturing fragment-level features.



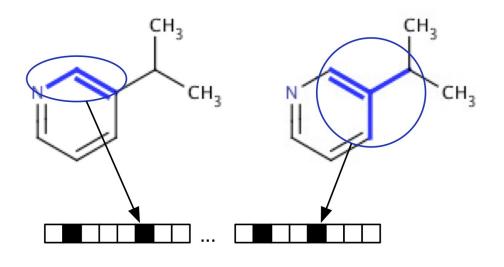
### Motivation: Why fragment-level information is critical?

#### **Properties of a molecule can be inferred from its fragments**

- For example, a fluorobenzene fragment indicates the label-1 for BBBP dataset with 97.0 %
- Chemists tried to incorporate fragment-wise information into fingerprint [Morgan et al., 1965] representation
- However, it is non-learnable and not appropriate for ML framework

| BBBP (76.4 $\%$ are label-1) | Ratio of label-1 (%) |          |          |  |  |  |  |  |  |
|------------------------------|----------------------|----------|----------|--|--|--|--|--|--|
| Top-3 to                     | c1ccc(F)cc1          | N1CCNCC1 | N1CCCCC1 |  |  |  |  |  |  |
| label-1                      | 97.0                 | 90.7     | 89.9     |  |  |  |  |  |  |
| Top-3 to                     | C(=0)0               | S        | N        |  |  |  |  |  |  |
| label-0                      | 17.9                 | 34.0     | 56.9     |  |  |  |  |  |  |

| HIV (3.5% are label-1) | Ratio                | of label-1 (%)            |
|------------------------|----------------------|---------------------------|
| Top-3 to               | C1CC(N=[N+]=[N-])CO1 | S(=0)(=0)c1cc(C)c(C1)cc1S |
| label-1                | 78.2                 | 49.2                      |
| Top-3 to               | N1CCNCC1             | S(=0)(=0)c1ccc(C)cc1      |
| label-0                | 0.4                  | 0.6                       |



### Tackling Limited Label Issues: Multi-view Self-supervised Learning

### Approaches for molecular representation learning: Multi-view self-supervised learning

- 3D molecular geometry is critical for predicting molecular properties, but costly to obtain in downstream tasks
- Pretrain 2D molecular GNN with the aid of 3D information (e.g., 3D-Infomax [Stark et al., 2022], GraphMVP [Liu et al., 2022])
- Assume we have 2D/3D pretraining dataset and 2D downstream dataset, following the practical scenario
- Beneficial than utilizing only 2D molecules (e.g., MGSSL [Zhang et al., 2021], MolCLR [Wang et al., 2022]) in pretraining

| Methods                                                    | BBBP                               | Tox21          | ToxCast      | Sider        | Clintox        | MUV            | HIV            | Bace   Avg.                                                                    |
|------------------------------------------------------------|------------------------------------|----------------|--------------|--------------|----------------|----------------|----------------|--------------------------------------------------------------------------------|
| -                                                          | $\mid 65.4 \pm {\scriptstyle 2.4}$ | $74.9 \pm 0.8$ | $61.6\pm1.2$ | $58.0\pm2.4$ | $58.8 \pm 5.5$ | $71.0 \pm 2.5$ | $75.3 \pm 0.5$ | $72.6\pm4.9\left 67.2\right.$                                                  |
| $\begin{array}{c} {\rm MGSSL} \\ {\rm MolCLR} \end{array}$ | 1                                  |                |              |              |                |                |                | $\begin{array}{c cccc} 76.2 \pm 1.3 & 70.8 \\ 74.6 \pm 3.5 & 67.8 \end{array}$ |
| 3D-InfoMax<br>GraphMVP-G                                   |                                    |                |              |              |                |                |                | $\begin{array}{c cccc} 79.9 \pm 0.9 & 73.4 \\ 80.2 \pm 1.5 & 74.1 \end{array}$ |

[Stark et al., 2022] 3D Infoamx improves GNNs for Molecular Property Prediction, ICML 2022

[Liu et al., 2022] Pre-training Molecular Graph Representation with 3D Geometry, ICLR 2022

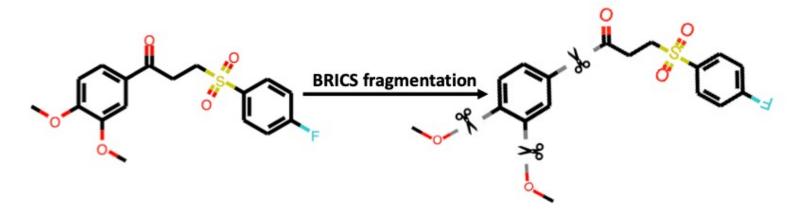
### Utilizing Fragments in Multi-view Self-supervised Learning?

#### Fragment-based multi-view contrastive learning: Inject fragment-level information into contrastive learning

Generating positive pairs and negative pairs is key to pretrain a neural network via contrastive learning.

$$\mathcal{L}_{\text{CL}}(\mathbf{z}, \mathbf{z}^+, \{\mathbf{z}^-\}) = -\log \frac{\exp(\text{sim}(\mathbf{z}, \mathbf{z}^+)/\tau)}{\sum_{\mathbf{z}^-} \exp(\text{sim}(\mathbf{z}, \mathbf{z}^-)/\tau)}$$

- How should we generate effective positive/negative pairs for fragment-based contrastive learning?
- **Idea 1:** We regard a set of fragments as a positive view of the original molecule.
  - A molecule can be viewed as a set of its meaningful fragments; we use BRICS decomposition [Degen et al., 2008]



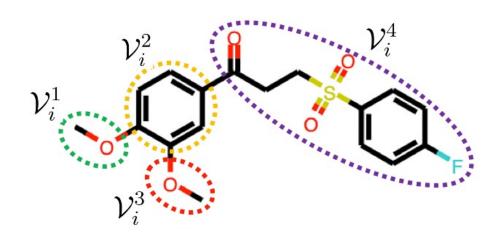
### Utilizing Fragments in Multi-view Self-supervised Learning?

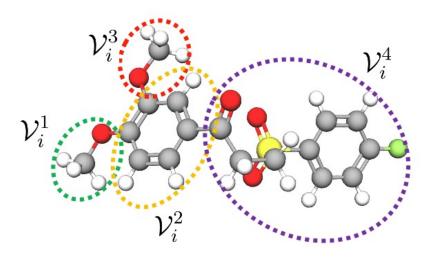
#### Fragment-based multi-view contrastive learning: Inject fragment-level information into contrastive learning

Generating positive pairs and negative pairs is key to pretrain a neural network via contrastive learning.

$$\mathcal{L}_{\texttt{CL}}(\mathbf{z}, \mathbf{z}^+, \{\mathbf{z}^-\}) = -\log \frac{\exp(\text{sim}(\mathbf{z}, \mathbf{z}^+)/\tau)}{\sum_{\mathbf{z}^-} \exp(\text{sim}(\mathbf{z}, \mathbf{z}^-)/\tau)}$$

- How should we generate effective positive/negative pairs for fragment-based contrastive learning?
- **Idea 2:** We regard the corresponding fragments in the 2D and 3D molecule as a positive view.
- Corresponding fragments represent exactly the same entity.





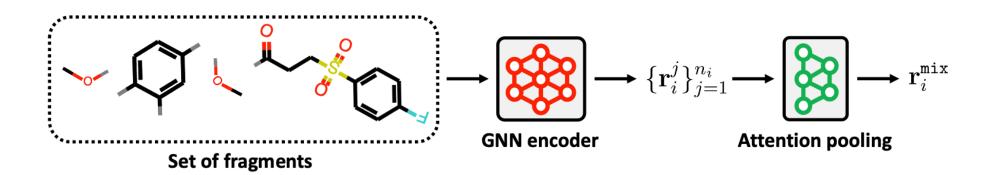
### Proposed Framework: FragCL

Self-supervised molecular pretraining with Fragment-based multi-view Contrastive Learning (FragCL)

- Generate fragment-based positive/negative views from a given unlabeled molecules.
- Apply multi-view contrastive learning framework to learn generalizable representations.
- How can we make the representation for a set of fragments?
- Y

Utilize attention pooling to aggregate fragment-wise representation!

The encoder automatically learns how to mix fragment-level information

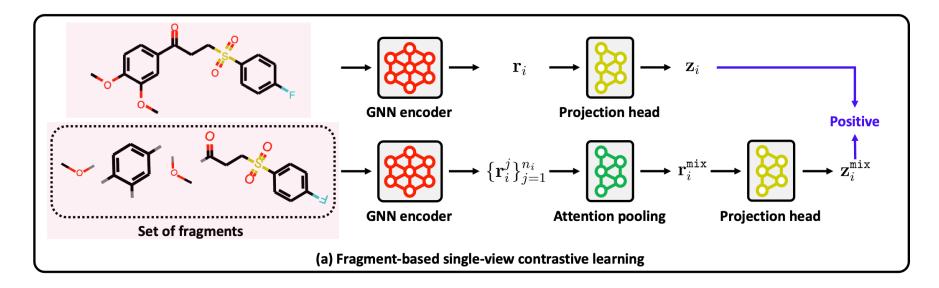


### Fragment-based Contrastive Learning (FragCL): Single-view Objective

#### View construction strategy for single-view molecules within 2D (or 3D) molecules

- Positive views: A molecule and its set of fragments  $(M_i, \{M_i^j\})$
- Negative views: A molecule and a set of fragments from another molecule  $(M_i, \{M_k^l\})$  with  $k \neq i$
- Where  $M_i$  denotes the i-the molecule in a mini-batch and  $M_i^j$  denotes the j-th fragment of i-th molecule

$$\mathcal{L}_{ t single} := rac{1}{n} \sum_{i=1}^n \left( \mathcal{L}_{ t CL}(\mathbf{z}_{2 t D,i}, \mathbf{z}_{2 t D,i}^{ t mix}, \{\mathbf{z}_{2 t D,j}^{ t mix}\}_{j 
eq i}) + \mathcal{L}_{ t CL}(\mathbf{z}_{3 t D,i}, \mathbf{z}_{3 t D,i}^{ t mix}, \{\mathbf{z}_{3 t D,j}^{ t mix}\}_{j 
eq i}) 
ight)$$

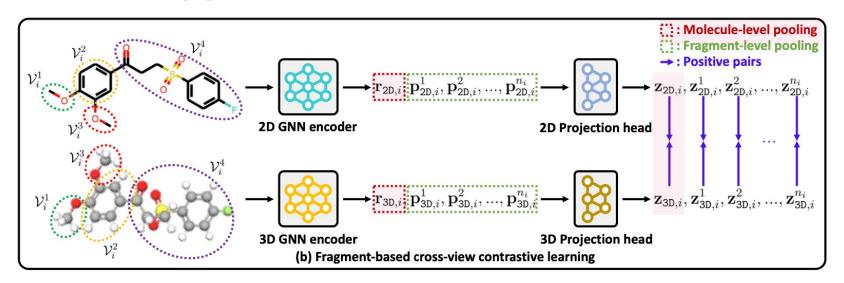


### Fragment-based Contrastive Learning (FragCL): Cross-view Objective

#### View construction strategy for cross-view molecules between 2D and 3D molecules: Molecule-level

- Positive views: Different view of the same molecule  $(M_{i,2D}, M_{i,3D})$
- Negative views: Different view of different molecules  $(M_{i,2D}, M_{j,3D})$  with  $i \neq j$
- Where  $M_{i,2D \text{ (or 3D)}}$  denotes the i-the molecule in 2D (or 3D) view; borrowed from [Stark et al., 2022], [Liu et al., 2022]

$$\mathcal{L}_{\texttt{single}} := \frac{1}{n} \sum_{i=1}^{n} \left( \mathcal{L}_{\texttt{CL}}(\mathbf{z}_{\texttt{2D},i}, \mathbf{z}_{\texttt{2D},i}^{\texttt{mix}}, \{\mathbf{z}_{\texttt{2D},j}^{\texttt{mix}}\}_{j \neq i}) + \mathcal{L}_{\texttt{CL}}(\mathbf{z}_{\texttt{3D},i}, \mathbf{z}_{\texttt{3D},i}^{\texttt{mix}}, \{\mathbf{z}_{\texttt{3D},j}^{\texttt{mix}}\}_{j \neq i}) \right)$$

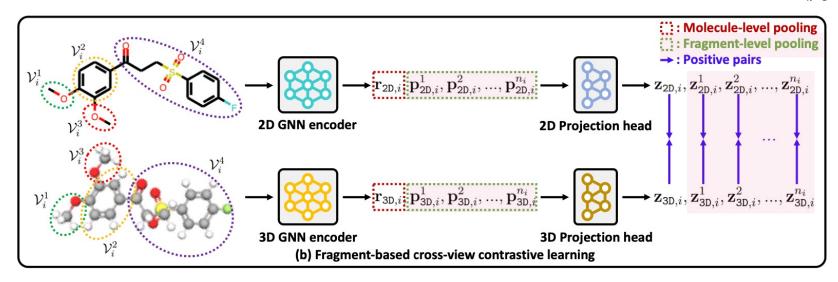


### Fragment-based Contrastive Learning (FragCL): Cross-view Objective

#### View construction strategy for cross-view molecules between 2D and 3D molecules: Fragment-level

- Positive views: Different view of the same fragment  $(M_{i,2D}^j, M_{i,3D}^j)$
- Negative views: Different view of fragments from different molecules  $(M_{i,2D}^k, M_{j,3D}^l)$  with  $i \neq j$
- Where  $M_{i,2D \text{ (or 3D)}}^j$  denotes the j-th fragment of i-the molecule in 2D (or 3D) view

$$\mathcal{L}_{\texttt{cross,frag}} := -\frac{1}{2n} \sum_{i=1}^{n} \left( \log \frac{e^{s_{i,i}/\tau}}{e^{s_{i,i}/\tau} + \sum_{j \neq i} e^{s_{i,j}^{2\mathbb{D}}/\tau}} \right. + \log \frac{e^{s_{i,i}/\tau}}{e^{s_{i,i}/\tau} + \sum_{j \neq i} e^{s_{i,j}^{3\mathbb{D}}/\tau}} \right) \qquad \qquad s_{i,i} \coloneqq \frac{1}{n_i} \sum_{k=1}^{n_i} \operatorname{sim}(\mathbf{z}_{2\mathtt{D},i}^k, \mathbf{z}_{3\mathtt{D},i}^k) \\ s_{i,j}^{\mathtt{2D} \, (\text{or 3D})} \coloneqq \frac{1}{n_i} \sum_{k=1}^{n_i} \max_{1 \leq l \leq n_j} \operatorname{sim}(\mathbf{z}_{2\mathtt{D} \, (\text{or 3D}),i}^k, \mathbf{z}_{3\mathtt{D} \, (\text{or 2D}),j}^k)$$



# Fragment-based Contrastive Learning (FragCL): Overall Framework

### Additional objective to inject 3D information to 2D GNN: Torsional angle reconstruction

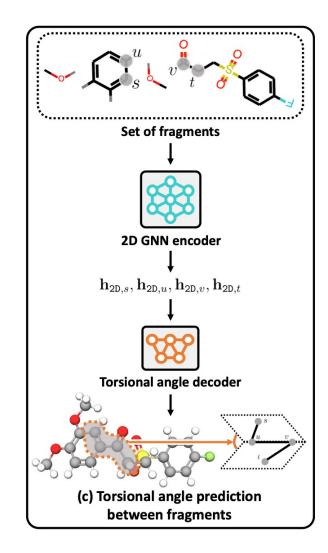
- Recap: Our main objective is to pretrain an effective 2D GNN
- 3D information (e.g., energy surface) is encoded in torsional angle
- Pretext task to predict the torsional angle between fragments  $\{M^k, M^l\}$

$$\mathcal{L}_{ exttt{tor}} \coloneqq rac{1}{|\mathcal{T}|} \sum_{(i,s,u,v,t,y) \in \mathcal{T}} \mathcal{L}_{ exttt{CE}}(\hat{y}_i(s,u,v,t),y)$$

#### **Overall Framework**

Jointly train with proposed single-view, cross-view, and torsion loss

$$\mathcal{L}_{\mathtt{FragCL}}\coloneqq \mathcal{L}_{\mathtt{single}} + \mathcal{L}_{\mathtt{cross}} + \mathcal{L}_{\mathtt{tor}}$$



### Experiments: FragCL is effective for various downstream tasks

We report the transfer-learning performance of pretrained 2D GNN on MoleculeNet downstream tasks

- We compare to 2D-only pretraining methods and 2D/3D multi-view pretraining methods.
- Best mean ROC-AUC score and scores within on standard deviation of the best mean score is marked bold.

| Methods                                                                                              | BBBP             | Tox21                      | ToxCast                    | Sider                      | Clintox                    | MUV                        | HIV                        | Bace                       | Avg.      |  |  |
|------------------------------------------------------------------------------------------------------|------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------|--|--|
| -                                                                                                    | 65.4±2.4         | <b>74.9</b> ±0.8           | 61.6±1.2                   | 58.0±2.4                   | 58.8±5.5                   | 71.0±2.5                   | <b>75.3</b> ±0.5           | 72.6±4.9                   | 67.2      |  |  |
| Pretrained with 50k 2D molecular graphs of GEOM and fine-tuned on 2D molecular graphs of MoleculeNet |                  |                            |                            |                            |                            |                            |                            |                            |           |  |  |
| AttrMask                                                                                             | 70.2±0.5         | $74.2{\scriptstyle\pm0.8}$ | $62.5{\scriptstyle\pm0.4}$ | $60.4{\scriptstyle\pm0.6}$ | $68.6{\scriptstyle\pm9.6}$ | $73.9{\scriptstyle\pm1.3}$ | $74.3{\scriptstyle\pm1.3}$ | $77.2 \pm 1.4$             | 70.2      |  |  |
| ContextPred                                                                                          | <b>71.2</b> ±0.9 | $73.3 \pm 0.5$             | $62.8{\scriptstyle\pm0.3}$ | $59.3{\scriptstyle\pm1.4}$ | $73.7{\scriptstyle\pm4.0}$ | $72.5{\scriptstyle\pm2.2}$ | <b>75.8</b> $\pm$ 1.1      | $78.6 \pm 1.4$             | 70.9      |  |  |
| G-Motif                                                                                              | 66.4±3.4         | $73.2 \pm 0.8$             | $62.6 \pm 0.5$             | $60.6 \pm 1.1$             | $77.8 \pm 2.0$             | $73.3 \pm 2.0$             | $73.8 \pm 1.4$             | $73.4 \pm 4.0$             | 70.1      |  |  |
| GraphCL                                                                                              | 67.5±3.3         | <b>75.0</b> $\pm$ 0.3      | $62.8 \pm 0.2$             | $60.1 \pm 1.3$             | $78.9 \pm 4.2$             | <b>77.1</b> ±1.0           | <b>75.0</b> $\pm$ 0.4      | $68.7{\scriptstyle\pm7.8}$ | 70.1      |  |  |
| JOÃO                                                                                                 | 66.0±0.6         | $74.4 \pm 0.7$             | $62.7 \pm 0.6$             | $60.7 \pm 1.0$             | $66.3 \pm 3.9$             | <b>77.0</b> $\pm$ 2.2      | <b>76.6</b> ±0.5           | $72.9 \pm 2.0$             | 70.6      |  |  |
| MGSSL                                                                                                | 67.3±0.9         | $74.5 \pm 0.2$             | $63.6 \pm 0.4$             | $58.4 \pm 0.2$             | $75.4 \pm 3.8$             | $73.9 \pm 1.4$             | <b>77.2</b> ±2.5           | $76.2 \pm 1.3$             | 70.8      |  |  |
| MolCLR                                                                                               | 67.6±0.6         | $74.4 \pm 1.3$             | $62.9 \pm 0.2$             | $58.7 \pm 1.1$             | $57.9 \pm 3.0$             | $70.8{\scriptstyle\pm2.8}$ | <b>75.4</b> ±1.2           | $74.6 \pm 3.5$             | 67.8      |  |  |
| D-SLA                                                                                                | 69.6±2.4         | $73.7{\scriptstyle\pm0.7}$ | $63.3{\scriptstyle\pm0.2}$ | $59.2{\scriptstyle\pm2.0}$ | $60.5{\scriptstyle\pm1.0}$ | $75.3{\scriptstyle\pm0.6}$ | $\textbf{75.8} {\pm} 0.9$  | <b>81.2</b> ±2.5           | 69.8      |  |  |
| Pretrained with 5                                                                                    | 0k 2D and        | 3D molecu                  | lar graphs c               | of GEOM a                  | nd fine-tun                | ed on 2D m                 | olecular gr                | aphs of Mo                 | leculeNet |  |  |
| 3D-InfoMax                                                                                           | 67.9±1.2         | <b>75.3</b> ±0.3           | <b>64.6</b> ±0.4           | <b>59.6</b> ±0.7           | 89.7±0.5                   | <b>76.7</b> ±0.6           | 73.4±1.2                   | 79.9±0.9                   | 73.4      |  |  |
| GraphMVP                                                                                             | 69.6±0.2         | <b>75.6</b> ±0.7           | $63.7 \pm 0.3$             | $61.3 \pm 0.6$             | $89.0 \pm 1.4$             | $75.7 \pm 1.0$             | <b>75.1</b> $\pm$ 0.3      | <b>80.9</b> ±1.3           | 73.9      |  |  |
| GraphMVP-G                                                                                           | 70.1±0.7         | <b>75.3</b> ±0.9           | $64.2 \pm 0.9$             | $61.0 \pm 0.5$             | $89.4 \pm 1.5$             | <b>77.7</b> ±1.6           | <b>75.3</b> ±0.8           | $80.2 \pm 1.5$             | 74.1      |  |  |
| GraphMVP-C                                                                                           | 69.6±1.4         | $74.6{\scriptstyle\pm0.1}$ | $64.1{\scriptstyle\pm0.2}$ | $\textbf{63.0} {\pm} 0.1$  | $88.7{\scriptstyle\pm2.6}$ | $73.9{\scriptstyle\pm1.7}$ | $74.7 \pm 2.0$             | <b>81.3</b> ±0.7           | 73.7      |  |  |
| FragCL (Ours)                                                                                        | <b>71.4</b> ±0.4 | <b>75.2</b> ±0.7           | <b>65.1</b> ±0.8           | 61.0±0.6                   | <b>95.2</b> ±1.0           | <b>77.6</b> ±1.0           | <b>76.3</b> ±0.4           | <b>82.3</b> ±1.6           | 75.5      |  |  |

### Experiments: FragCL is effective for various downstream tasks

We report the semi-supervised learning performance of pretrained 2D GNN on QM9 downstream tasks

- We compare to 2D/3D multi-view pretraining methods and the best MAE score is marked bold.
- Label fraction is the ratio of labels used for semi-supervised learning setup.

| Methods    | ZPV                                                                                                | $E\downarrow \mu\downarrow$ | $\alpha\downarrow$ | $C_v\downarrow$ | LUMO ↓ | НОМО↓ | $\varepsilon_{gap}\downarrow$ | $R^2\downarrow$ | $U_0 \downarrow$ | $U_{298}\downarrow$ | $H_{298}\downarrow$ | $G_{298}\downarrow$ |
|------------|----------------------------------------------------------------------------------------------------|-----------------------------|--------------------|-----------------|--------|-------|-------------------------------|-----------------|------------------|---------------------|---------------------|---------------------|
| -          | 43                                                                                                 | .7 0.059                    | 0.400              | 0.144           | 80.5   | 89.4  | 171.0                         | 3.27            | 62.9             | 61.8                | 57.0                | 48.1                |
|            | Pretrained on 310k 2D and 3D molecular graphs of GEOM and fine-tuned on 2D molecular graphs of QM9 |                             |                    |                 |        |       |                               |                 |                  |                     |                     |                     |
| 3D-Infomax | c   27                                                                                             | .0 0.051                    | 0.355              | 0.126           | 63.4   | 55.2  | 103.8                         | 2.99            | 38.8             | 45.6                | 41.0                | 40.8                |
| GraphMVP   | -G   24                                                                                            | .1 0.051                    | 0.367              | 0.123           | 59.1   | 53.8  | 100.4                         | 2.97            | 39.9             | 44.2                | 41.0                | 40.3                |
| FragCL (O  | ours)   24                                                                                         | .0 0.049                    | 0.353              | 0.121           | 57.1   | 51.8  | 97.1                          | 2.90            | 39.2             | 42.9                | 40.3                | 40.0                |

Results with full label access (label fraction is 100%)

| Methods            | 2       | ZPVE ↓ |         | ]         | LUMO ↓   |          | I        | ∙ ОМО   |                 | $U_0\downarrow$ |      |
|--------------------|---------|--------|---------|-----------|----------|----------|----------|---------|-----------------|-----------------|------|
| Label Fraction (%) | 20      | 50     | 100     | 20        | 50       | 100      | 20       | 50      | 100   20        | 50              | 100  |
| -                  | 111.0   | 87.1   | 43.7    | 236.0     | 140.6    | 80.5     | 233.6    | 128.1   | 89.4   165.5    | 82.8            | 62.9 |
| Pretrained on 1    | 110k 2D | and 3D | molecul | lar grapl | ns of QM | 9 and fi | ne-tuned | on 2D n | nolecular graph | ns of QM        | [9   |
| 3D-Infomax         | 87.2    | 42.8   | 24.4    | 215.0     | 98.4     | 57.9     | 181.0    | 102.4   | 57.7   148.2    | 75.0            | 42.1 |
| GraphMVP-G         | 85.4    | 42.8   | 24.4    | 214.3     | 99.7     | 59.7     | 177.3    | 100.0   | 56.9   145.7    | 74.5            | 42.2 |
| FragCL (Ours)      | 83.7    | 39.4   | 22.2    | 202.2     | 97.8     | 54.6     | 172.9    | 91.0    | 48.4   138.7    | 71.8            | 38.0 |

### Experiments: FragCL is effective for molecule-retrieval

FragCL framework can effectively recognize the fragment-wise structure of molecule

- For a query molecule, we report the top-3 similar molecules in the representation space.
- We mark the common fragments as the same-colored dotted lines.

| Query | GraphN               | IVP-G (Liu et al., 2 | 2022) | FragCL (Ours) |       |          |  |  |  |
|-------|----------------------|----------------------|-------|---------------|-------|----------|--|--|--|
|       | CI NON               | N OH                 |       | HN            | HO    | F CO     |  |  |  |
| OH OH | NN S NH <sub>2</sub> | NH NH                | CI CI | HOYON         | OH OH | но-      |  |  |  |
| 330   | <b>\</b>             |                      | CI CI | 30            | 20    | <b>%</b> |  |  |  |

## Experiments: Ablation study on FragCL

#### Ablation study shows the effectiveness of each component in FragCL

- We show the efficacy of BRICS decomposition as a decomposition strategy to obtain positive view.
- Each multi-view interaction has its own benefits to improve overall performance.

| Positive view construction | Fragmentation strategy            | BBBP             | Tox21                      | ToxCast                    | Sider                      | Clintox                    | MUV                        | HIV                        | Bace                       | Avg. |
|----------------------------|-----------------------------------|------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------|
| Nodedrop, Subgraph         | -                                 | 69.3±1.4         | $75.0{\scriptstyle\pm0.4}$ | $63.7{\scriptstyle\pm0.4}$ | $60.4{\scriptstyle\pm1.4}$ | $88.3{\scriptstyle\pm0.6}$ | $76.2{\scriptstyle\pm1.9}$ | $76.2{\scriptstyle\pm1.5}$ | 78.3±0.4                   | 73.4 |
| A set of fragments (Ours)  | Random bond deletion              | 69.3±1.0         | $73.8{\scriptstyle\pm0.9}$ | $63.9{\scriptstyle\pm0.5}$ | $59.9{\scriptstyle\pm1.2}$ | $91.4{\scriptstyle\pm2.3}$ | $76.8{\scriptstyle\pm0.7}$ | $74.6 \pm 3.1$             | 78.3±2.5                   | 73.5 |
|                            | Random non-ring bond deletion     | 69.5±0.9         | $73.7{\scriptstyle\pm0.2}$ | $64.0{\scriptstyle\pm0.1}$ | $60.5{\scriptstyle\pm0.5}$ | $93.2{\scriptstyle\pm1.5}$ | $77.3{\scriptstyle\pm2.5}$ | $75.2{\scriptstyle\pm0.9}$ | $78.8{\scriptstyle\pm0.4}$ | 74.0 |
|                            | <b>BRICS decomposition (Ours)</b> | <b>71.4</b> ±0.4 | <b>75.2</b> ±0.7           | $\textbf{65.1} {\pm} 0.8$  | $\textbf{61.0} {\pm} 0.6$  | $95.2 \pm 1.0$             | <b>77.6</b> ±1.0           | <b>76.3</b> $\pm$ 0.4      | <b>82.3</b> ±1.6           | 75.5 |

#### Ablation study on positive view construction & fragmentation strategy

| Pretraining data     | Μι             | DDDD           | Tox21         | ToxCast          | Sider                      | Clintox                   | MUV                        | HIV            | Daga                       |                                      |                                      |      |
|----------------------|----------------|----------------|---------------|------------------|----------------------------|---------------------------|----------------------------|----------------|----------------------------|--------------------------------------|--------------------------------------|------|
|                      | Molecule-level | Fragment-level | Torsion-level | BBBP             | 10X21                      | ToxCast                   | Sidei                      | Cilitox        | NIO V                      | ПΙΥ                                  | Bace                                 | Avg. |
| Single-view (2D)     | -              | -              | -             | 71.0±0.3         | 75.3±0.8                   | 62.8±0.4                  | 60.3±1.1                   | 79.1±2.2       | 74.1±0.5                   | 75.9±1.2                             | 80.7±1.3                             | 72.4 |
|                      | ✓              | -              | -             | 68.2±0.6         | <b>75.6</b> ±1.5           | 64.6±0.2                  | 60.8±0.8                   | 94.9±0.8       | <b>77.7</b> ±1.2           | <b>76.3</b> ±0.5                     | 79.5±0.3                             | 74.7 |
| Multi-view (2D & 3D) | $\checkmark$   | ✓              | -             | 71.0±0.8         | $75.3{\scriptstyle\pm0.9}$ | $64.4 \pm 0.3$            | <b>61.6</b> $\pm$ 2.6      | $95.1 \pm 1.5$ | $76.4{\scriptstyle\pm1.6}$ | $76.2{\scriptstyle\pm0.7}$           | $80.9{\scriptstyle\pm2.6}$           | 75.1 |
|                      | ✓              | ✓              | ✓             | <b>71.4</b> ±0.4 | $75.2{\scriptstyle\pm0.7}$ | $\textbf{65.1} {\pm} 0.8$ | $61.0{\scriptstyle\pm0.6}$ | $95.2 \pm 1.0$ | $77.6{\scriptstyle\pm1.0}$ | $\textbf{76.3} {\scriptstyle\pm0.4}$ | $\textbf{82.3} {\scriptstyle\pm1.6}$ | 75.5 |

Albation study on multi-view interactions

### FragCL: Simple & Effective Framework for Molecular Pretraining

Summary: We propose a simple yet effective framework for molecular contrastive learning.

We propose FragCL = Fragment-based multi-view Contrastive Learning for molecular self-supervised learning

- 1. Construct fragment-based positive/negative views for molecular contrastive learning
- 2. Transfer learning and semi supervised learning: Utilize unlabeled molecule to find good initialization of GNN
- 3. Molecule retrieval: Can be used to find semantically similar molecules