

Improve State-Level Wheat Yield Forecasts in Kazakhstan On GEOGLAM'S EO Data by Leveraging A Simple Spatial-Aware Technique

Anh Nhu, Ritvik Sahajpal, Christina Justice, Inbal Becker-Reshef NASA Harvest & University of Maryland, College Park

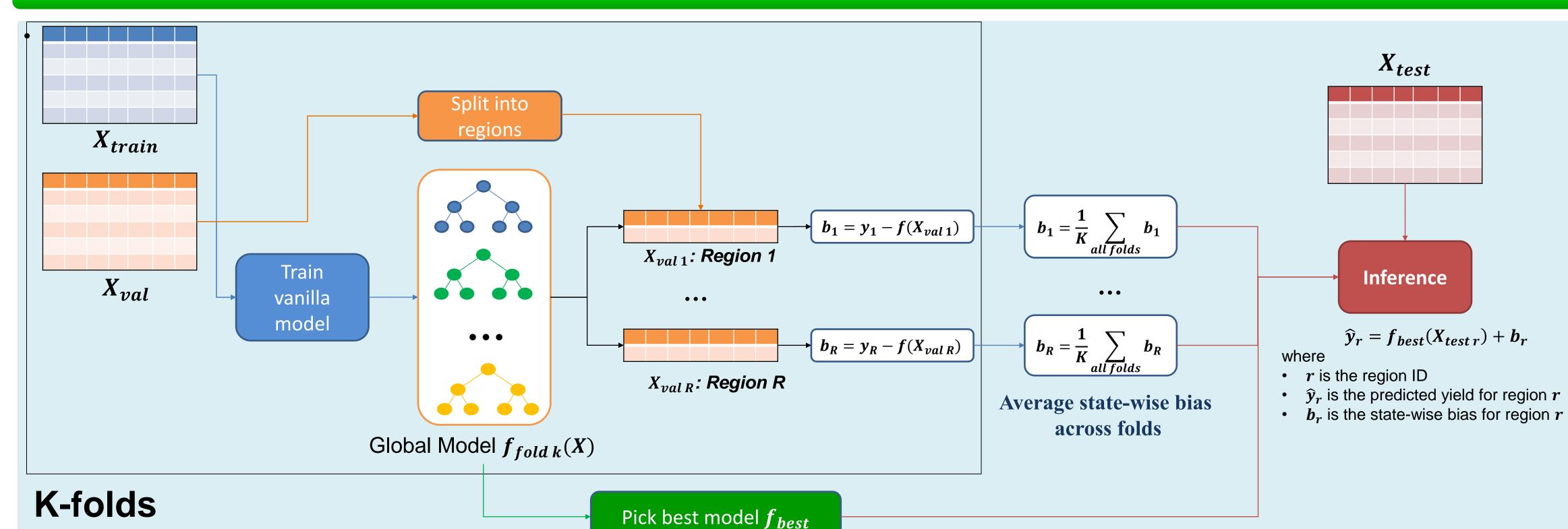
MOTIVATION

- Yield forecast is critical for food security monitoring, crop stock management, and making policies for supporting farmers and consumers.
- There are many existing research projects proposing novel methodologies, both traditionally and algorithmically, to improve the accuracy of yield forecasts.
- Few research explicitly address the spatial biases, causing good overall performance but underperformance in some regions.
- Primary contribution:

We explicitly alleviate the spatial biases problem by using a simple spatial-aware technique called "Statewise Additive Bias".

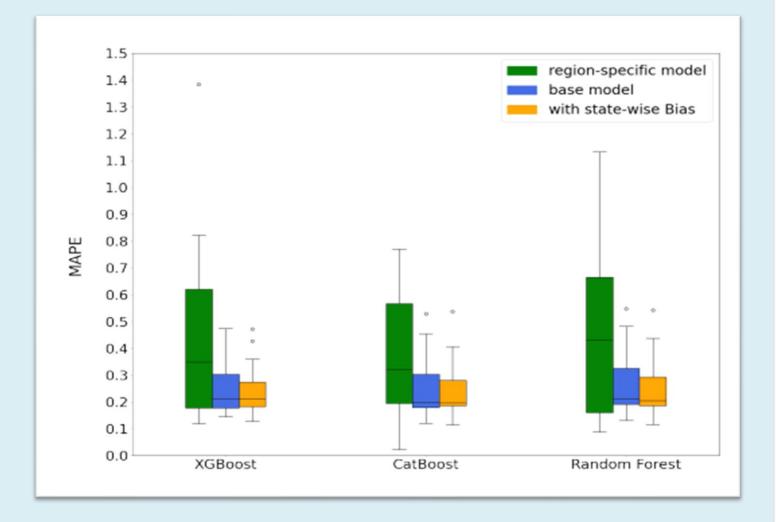
more reliable predictions for each state.

DATA


- Daily Earth Observation data collected from 2001 to 2020 by MODIS Satellite.
- Weather and climatic features:
 - 1. NDVI (Normalized Difference Vegetation Index)
 - 2. Temperature (max, min, average)
 - 3. Precipitation
 - 4. SMAP soil moisture
 - 5. Evaporative Stress Index (ESI)
 - 6. GDD

 Kazakhstan wheat crop mask was used to ensure accurate EO measurement for each region.

SPATIAL-AWARE PREDICTION FRAMEWORK



RESULTS

RMSE change: state-wise bias VS baseline model

Province	XGBoost	CatBoost	Random Forest
Akmolinskaya	-0.47%	+1.13%	-1.74%
Aktyubinskaya	+1.54%	+1.35%	-5.60%
Almatinskaya	-28.37%	-24.26%	-24.04%
Jambylslkaya	+1.35%	+2.49%	+0.08%
Karagandinskaya	-1.37%	+0.55%	-0.72%
Kustanayskaya	-3.85%	-2.64%	-3.55%
Pavlodarskaya	-0.65%	+2.86%	-2.18%
Severo-Kazachstanskaya	+2.38%	+26.86%	-15.42%
Vostochno-Kazachstanskaya	-4.48%	-4.11%	-1.17%
Yujno-Kazachstanskaya	-8.84%	-6.95%	-7.69 %
Zapadno-Kazachstanskaya	-1.38%	+0.14%	-0.62%
National	-8.90%	-8.10%	-9.76%

MAPE of regional model, baseline global model, and state-wise bias

CONCLUSIONS

RESULTS INTERPRETATION:

- 1. Although the Spatial-Aware Additive Bias technique is simple, it effectively improves the performance of statelevel yield prediction and reduces spatial biases.
- 2. Errors in some regions (Almatinskaya) are significantly reduced, while the overall errors are reduced by a noticeable degree.
- 3. The spatial bias does exist, reducing the prediction fairness.

FUTURE WORK:

- 1. Explore more sophisticated approaches to explicitly address the spatial bias problem for small crop datasets.
- 2. Some examples include regional clustering and/or regionspecific feature embedding into the model.

ACKNOWLEDGEMENTS:

The authors acknowledge USAID grant 720BHA21IO00261 for funding this work, as well as the efforts of our partners in FAO.