

Controlling Vision-Language Models for Multi-Task Image Restoration

Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön

Uppsala University

Project Page:

https://algolzw.github.io/daclip-uir/index.html

Multi-Task Image Restoration

Key Idea: Perform restoration across multiple tasks and datasets with a single model.

- Better generalization for different degradation types.
- Efficient deployment of real-world applications.

Multi-Task Image Restoration

Key Idea: Perform restoration across multiple tasks and datasets with a single model.

- Better generalization for different degradation types.
- Efficient deployment of real-world applications.

Multi-Task Image Restoration

Key Idea: Perform restoration across multiple tasks and datasets with a single model.

- Better generalization for different degradation types.
- Efficient deployment of real-world applications.

Examples of Multi-Task Image Restoration

Image deblurring

Face inpainting

JPEG artifact deduction

Image desnowing

Low-light image enhancement

Image shadow removal

Image denoising

Image raindrop removal

Image deraining

Solutions and Challenges

Common solutions:

- Train individual modules for degradation classification
 - AirNet[1] trains an extra encoder to differentiate degradation types using contrastive learning.
 - PromptIR_[2] employs a visual prompt module to guide the restoration for different tasks.
 - *They are limited to a small number of degradation types and the specific datasets!

Challenges:

- Inaccurate prediction due to unbalanced datasets of different tasks.
- No proper way to utilize the degradation for image restoration.

^[1] Li, Boyun, et al. "All-in-one image restoration for unknown corruption". CVPR 2022.

^[2] Potlapalli, Vaishnav, et al. "Promptir: Prompting for all-in-one blind image restoration". NeurIPS 2023.

Solutions and Challenges

Common solutions:

- Train individual modules for degradation classification
 - AirNet[1] trains an extra encoder to differentiate degradation types using contrastive learning.
 - PromptIR_[2] employs a visual prompt module to guide the restoration for different tasks.
 - *They are limited to a small number of degradation types and the specific datasets!

Challenges:

- Inaccurate prediction due to unbalanced datasets of different tasks.
- No proper way to utilize the degradation for image restoration.

Our Idea: Large-scale pretrained vision-language models!!

^[1] Li, Boyun, et al. "All-in-one image restoration for unknown corruption". CVPR 2022.

^[2] Potlapalli, Vaishnav, et al. "Promptir: Prompting for all-in-one blind image restoration". NeurIPS 2023.

Solutions and Challenges

Common solutions:

- Train individual modules for degradation classification
 - AirNet[1] trains an extra encoder to differentiate degradation types using contrastive learning.
 - PromptIR_[2] employs a visual prompt module to guide the restoration for different tasks.
 - *They are limited to a small number of degradation types and the specific datasets!

Challenges:

- Inaccurate prediction due to unbalanced datasets of different tasks.
- No proper way to utilize the degradation for image restoration.

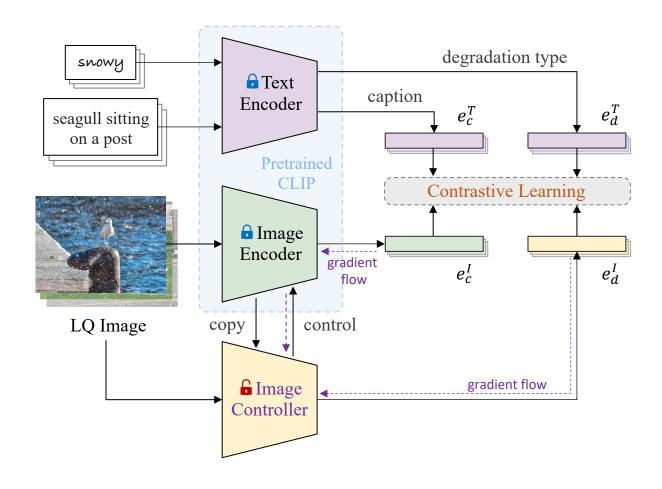
Our Idea: Large-scale pretrained vision-language models!!

^[1] Li, Boyun, et al. "All-in-one image restoration for unknown corruption". CVPR 2022.

^[2] Potlapalli, Vaishnav, et al. "Promptir: Prompting for all-in-one blind image restoration". NeurIPS 2023.

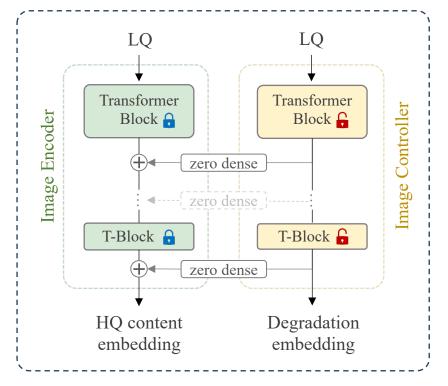
Degradation-aware CLIP (DA-CLIP)

- Controlling a pretrained vision-language model, i.e. CLIP[3], for:
 - <u>Degradation embedding</u> prediction.
 - 2. <u>Content embedding</u> prediction.



Degradation-aware CLIP (DA-CLIP)

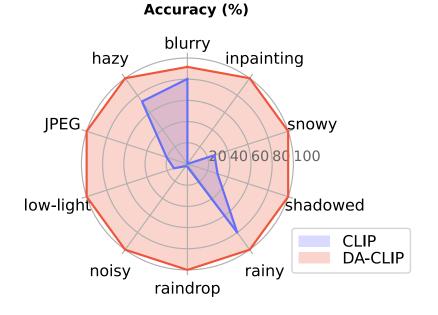
- Controlling a pretrained vision-language model, i.e. CLIP[3], for:
 - <u>Degradation embedding</u> prediction.
 - 2. <u>Content embedding</u> prediction.



Example: Controller for ViT-based image encoder

Degradation-aware CLIP (DA-CLIP)

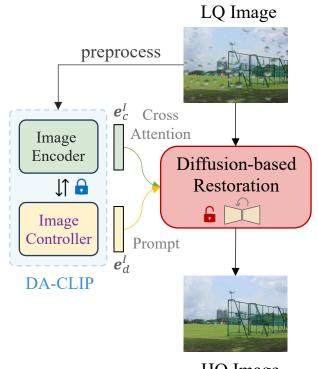
- Controlling a pretrained vision-language model, i.e. CLIP[3], for:
 - <u>Degradation embedding</u> prediction.
 - 2. <u>Content embedding</u> prediction.



CLIP vs. DA-CLIP on 10 Degradation Types

Image Restoration with DA-CLIP

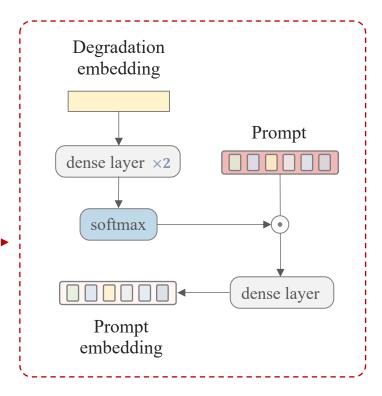
- Integrating <u>content embeddings</u> into U-Net with **cross-attention**.
- Integrating <u>degradation embeddings</u> into U-Net with **visual prompt**.



HQ Image

Image Restoration with DA-CLIP

- Integrating <u>content embeddings</u> into U-Net with cross-attention
- Integrating <u>degradation embeddings</u> into U Net with <u>visual prompt</u>



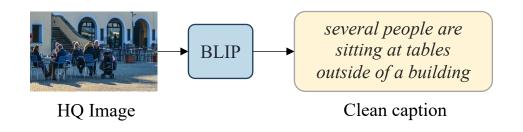
Prompt for degradation embeddings

HQ Image

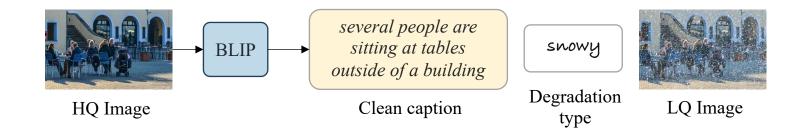
LQ Image

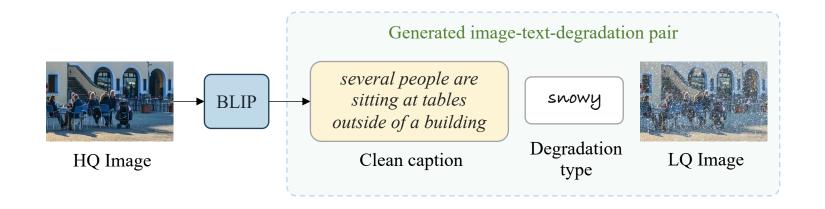
HQ Image

LQ Image



LQ Image





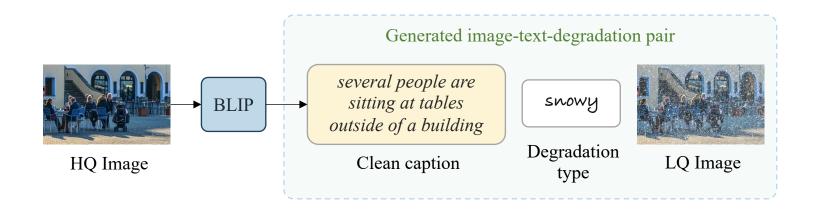


Table 1: Details of the collected training and testing datasets with different image degradation types.

Dataset	Blurry	Hazy	JPEG	Low-light	Noisy	Raindrop	Rainy	Shadowed	Snowy	Inpainting
#Train	2 103	6 000	3 550	485	3 550	861	1 800	2 680	1 872	29 900
#Test	1 111	1 000	29	15	68	58	100	408	601	100

Experiments

Degradation-Specific Image Restoration

Table 2: Quantitative comparison between our method with other state-of-the-art approaches on four different *degradation-specific* datasets. The best results are marked in boldface.

	\mathbf{r}	•	•	
a)	Der	aır	nng	7

- b) Low-light enhancement
- c) Deblurring
- d) Dehazing

Method	Disto	rtion	Perceptual		
TVICTIOU .	PSNR↑	SSIM↑	LPIPS↓	FID↓	
JORDER	26.25	0.835	0.197	94.58	
PReNet	29.46	0.899	0.128	52.67	
MPRNet	30.41	0.891	0.158	61.59	
MAXIM	30.81	0.903	0.133	58.72	
IR-SDE	31.65	0.904	0.047	18.64	
Ours	33.91	0.926	0.031	11.79	

⁽a) Deraining results on the Rain100H dataset.

Method	Disto	ortion	Perceptual		
- Iviounou	PSNR↑	SSIM↑	LPIPS↓	FID↓	
DeepDeblur	29.08	0.913	0.135	15.14	
DeblurGAN	28.70	0.858	0.178	27.02	
DeblurGANv2	29.55	0.934	0.117	13.40	
MAXIM	32.86	0.940	0.089	11.57	
IR-SDE	30.70	0.901	0.064	6.32	
Ours	30.88	0.903	0.058	6.15	

⁽c) Deblurring results on the GoPro dataset.

Method	Disto	rtion	Perceptual		
Wiemou	PSNR↑	SSIM↑	LPIPS↓	FID↓	
EnlightenGAN	17.61	0.653	0.372	94.71	
MIRNet	24.14	0.830	0.250	69.18	
URetinex-Net	19.84	0.824	0.237	52.38	
MAXIM	23.43	0.863	0.098	48.59	
IR-SDE	20.45	0.787	0.129	47.28	
Ours	23.77	0.830	0.083	34.03	

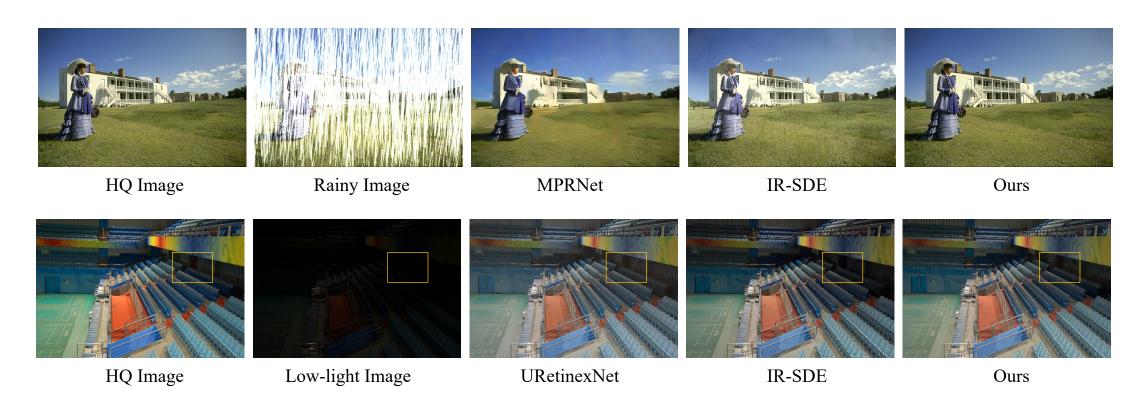
(b) Low-light enhancement on the LOL dataset.

Method	Disto	rtion	Perceptual		
1710tilou	PSNR↑	SSIM↑	LPIPS↓	FID↓	
GCANet	26.59	0.935	0.052	11.52	
GridDehazeNet	25.86	0.944	0.048	10.62	
DehazeFormer	30.29	0.964	0.045	7.58	
MAXIM	29.12	0.932	0.043	8.12	
IR-SDE	25.25	0.906	0.060	8.33	
Ours	30.16	0.936	0.030	5.52	

⁽d) Dehazing results on the RESIDE-6k dataset.

Degradation-Specific Image Restoration

a) Deraining b) Low-light enhancement c) Dehazing d) Deblurring



Comparison of our method with other approaches on different degradation-specific tasks.

Degradation-Specific Image Restoration

a) Deraining b) Low-light enhancement c) Dehazing d) Deblurring

Comparison of our method with other approaches on different degradation-specific tasks.

Unified Image Restoration

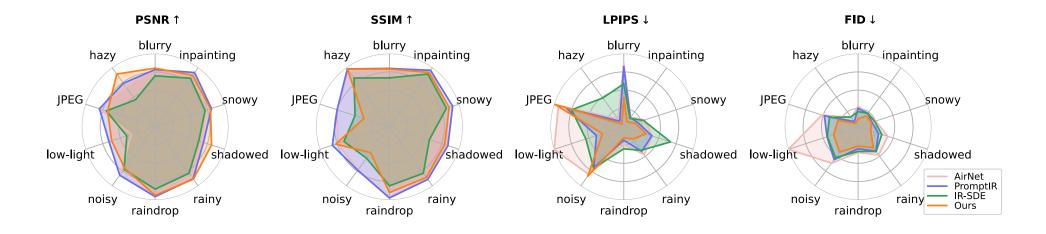


Table 3: Comparison of the average results over ten different datasets on the *unified* image restoration task.

Method	Disto	rtion	Perceptual		
Troute d	PSNR↑	SSIM↑	LPIPS↓	FID↓	
NAFNet	26.34	0.847	0.159	55.68	
NAFNet + Degradation	27.02	0.856	0.146	48.27	
NAFNet + DA-CLIP	27.22	0.861	0.145	47.94	
Restormer	26.43	0.850	0.157	54.03	
AirNet	25.62	0.844	0.182	64.86	
PromptIR	27.14	0.859	0.147	48.26	
IR-SDE	23.64	0.754	0.167	49.18	
Ours	27.01	0.794	0.127	34.89	

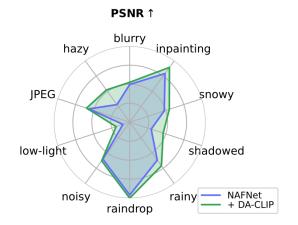
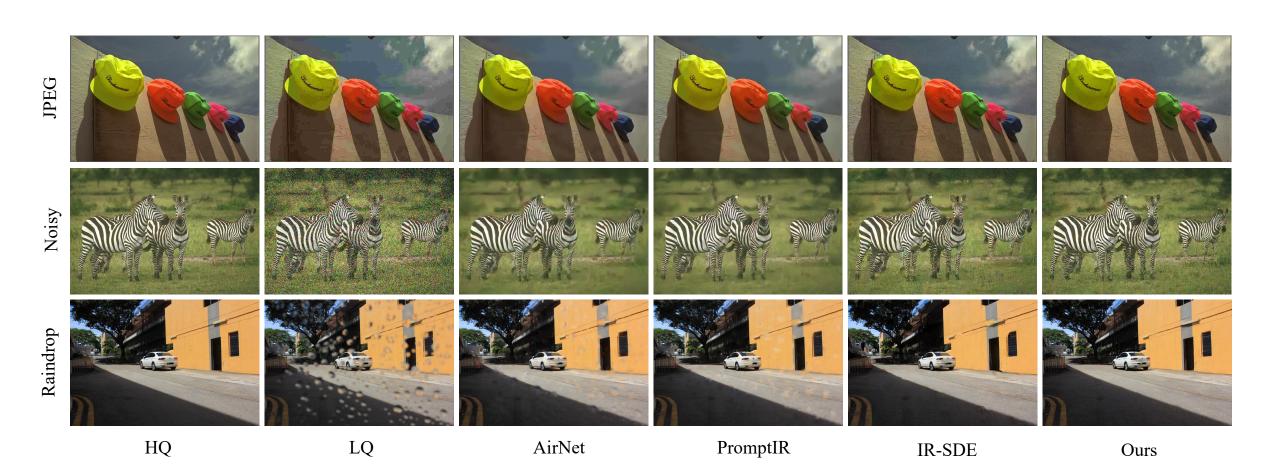


Figure 7: NAFNet with DA-CLIP for *unified* image restoration.

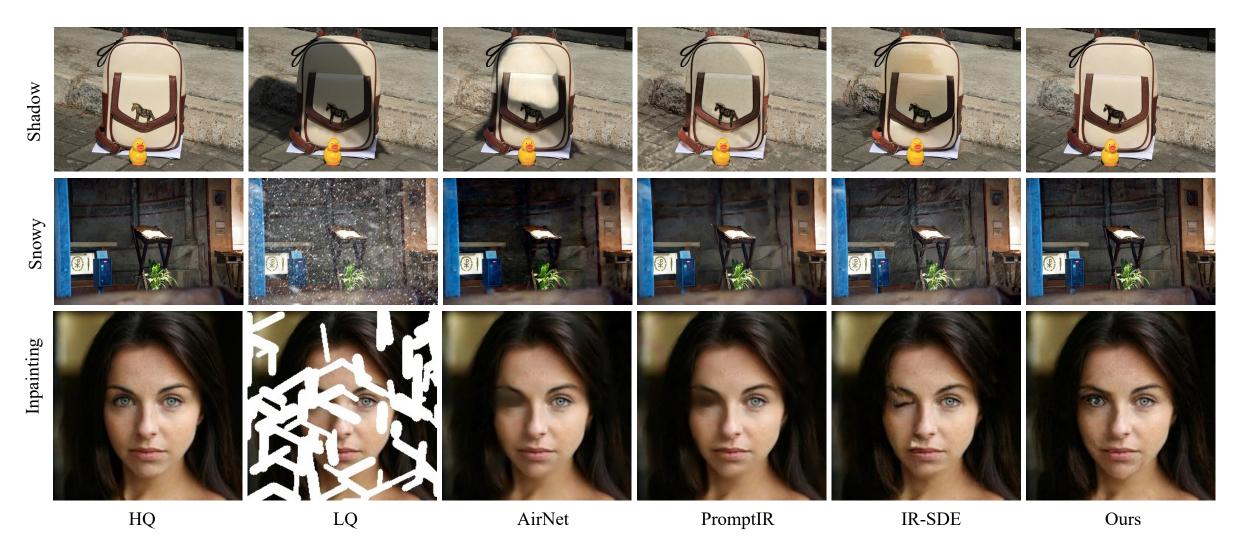
Unified Image Restoration

Comparison of our method with other approaches on the unified image restoration.

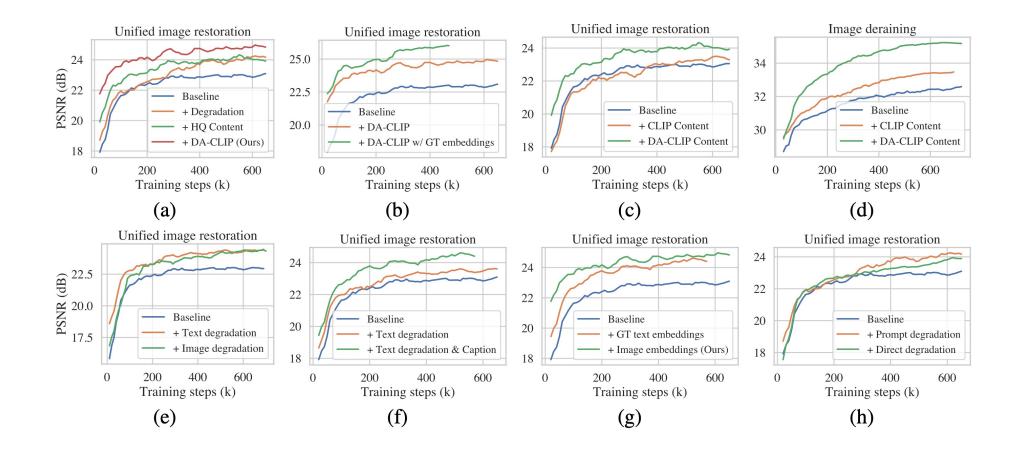


Unified Image Restoration

Comparison of our method with other approaches on the unified image restoration.



Discussion & Analysis



- We present **DA-CLIP** to leverage pretrained vision-language models for image restoration.
- We use **cross-attention** and **visual prompt** to integrate embeddings into restoration networks.
- We construct a mixed degradation dataset with synthetic captions for DA-CLIP training.
- Our approach achieves highly competitive performance on diverse image restoration tasks.

- We present **DA-CLIP** to leverage pretrained vision-language models for image restoration.
- We use **cross-attention** and **visual prompt** to integrate embeddings into restoration networks.
- We construct a mixed degradation dataset with synthetic captions for DA-CLIP training.
- Our approach achieves highly competitive performance on diverse image restoration tasks.

- We present **DA-CLIP** to leverage pretrained vision-language models for image restoration.
- We use **cross-attention** and **visual prompt** to integrate embeddings into restoration networks.
- We construct a mixed degradation dataset with synthetic captions for DA-CLIP training.
- Our approach achieves highly competitive performance on diverse image restoration tasks.

- We present **DA-CLIP** to leverage pretrained vision-language models for image restoration.
- We use **cross-attention** and **visual prompt** to integrate embeddings into restoration networks.
- We construct a mixed degradation dataset with synthetic captions for DA-CLIP training.
- Our approach achieves highly competitive performance on diverse image restoration tasks.

Thanks

Project Page: https://algolzw.github.io/daclip-uir/index.html

Follow-up Paper:
Photo-Realistic Image Restoration in the Wild with Controlled Vision-Language Models