Frozen Transformers in Language Models Are Effective Visual Encoder Layers

ICLR 2024 Spotlight

Ziqi Pang

Ziyang Xie*

Yunze Man*

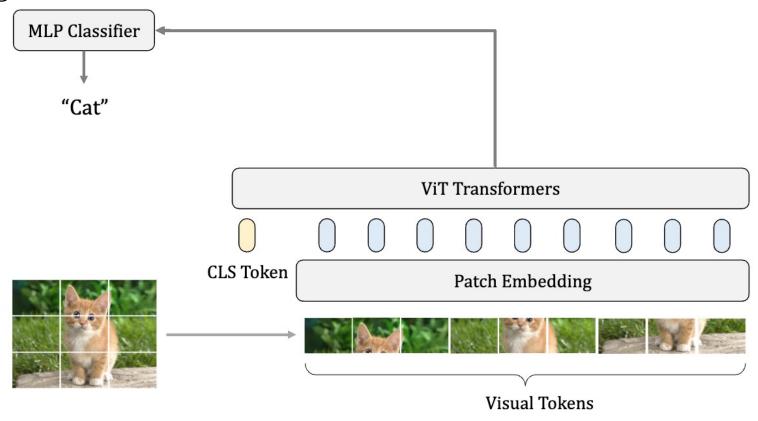
Yu-Xiong Wang

Our Key Observation

 LLMs, though trained solely with language, are surprisingly strong encoders for purely visual tasks even in the absence of language

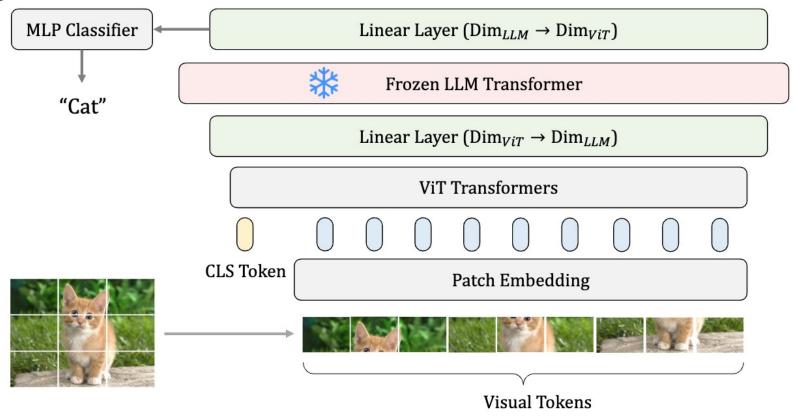
Our Simple Framework

- LLMs, though trained solely with language, are surprisingly strong encoders for purely visual tasks even in the absence of language
- This is achieved via a simple framework
 - → Appending a frozen LLM transformer after the visual encoder



Our Simple Framework

- LLMs, though trained solely with language, are surprisingly strong encoders for purely visual tasks even in the absence of language
- This is achieved via a simple framework
 - → Appending a frozen LLM transformer after the visual encoder



Applicability to Diverse Tasks

By using the last layer from LLaMA, we significantly improve various tasks

ImageNet
Image Classification
(2D)

Model	Acc		
ViT-S	80.1%		
+ LLaMA	80.7%		

SSv2
Action Recognition
(Video)

Model	Acc		
ViT-B	64.9%		
+ LLaMA	66.0%		

VQAv2, 2D VQA (2D Vision Language)

Model	Score
METER	0.696
+ LLaMA	0.702

ScanObjectNN,
Point Cloud Classification
(3D)

Model	Acc
PointBERT	83.1%
+ LLaMA	83.8%

Argoverse
Motion Forecasting
(Non-semantic)

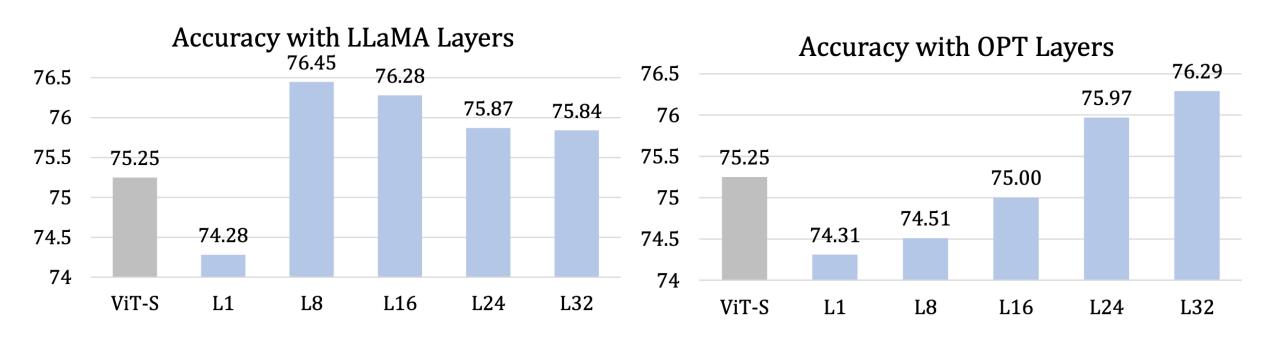
Model	MR↓		
VectorNet	13.2%		
+ LLaMA	12.7%		

SQA3D, 3D Grounding (3D Vision Language)

Model	EM
SQA3D	47.2%
+ LLaMA	48. (8))

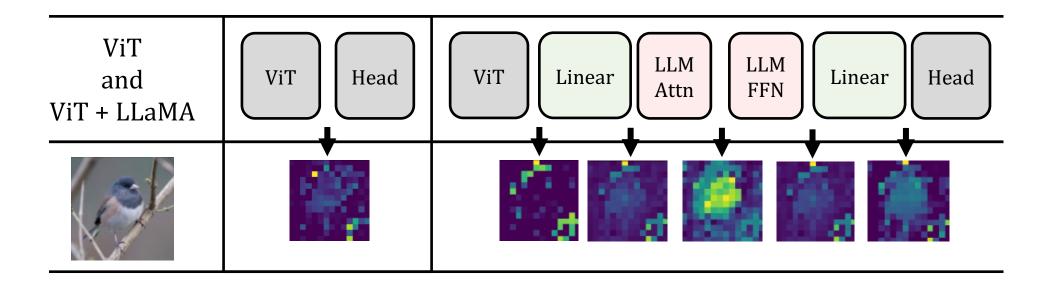
Ablation and Analysis

- The improvement does not solely come from capacity, but the LLM transformer
- The improvement generalizes to diverse choices of LLM transformers



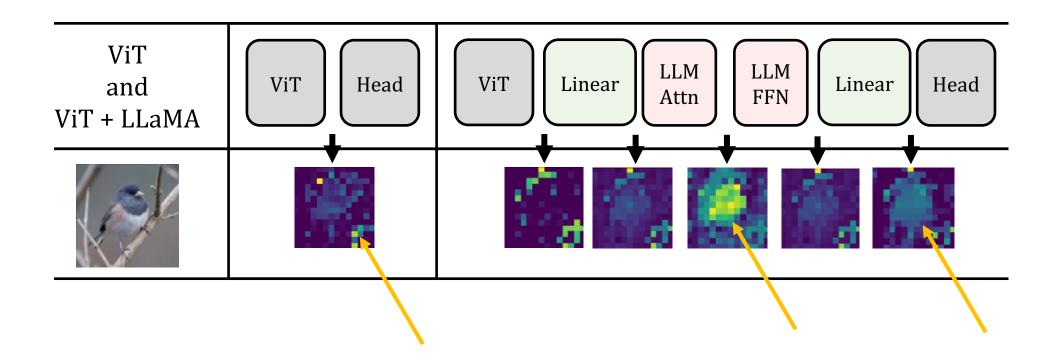
Explanation: Information Filtering Hypothesis

- Our method benefits from frozen LLM transformers distinguishing and amplifying informative tokens
- Emergent ability to concentrate on foregrounds. Uncommon for supervised ViTs



Explanation: Information Filtering Hypothesis

- Our method benefits from frozen LLM transformers distinguishing and amplifying informative tokens
- Emergent ability to concentrate on foregrounds. Uncommon for supervised ViTs



Our Hypothesis Applies to Various Tasks

Action recognition: selection of key frames

Model	Threshold			
ViT-S	Low			
	High		*	
ViT-S + LLaMA	Low			
	High	_	1	

Takeaways

- We discover that using a frozen transformer block from pre-trained LLMs as a visual encoder layer facilitates a diverse range of tasks
- We demonstrate that the benefits of frozen LLM transformers generalize to various LLMs and transformer blocks
- We propose the information filtering hypothesis: the incorporated LLM blocks distinguish the informative tokens and amplify their effect

