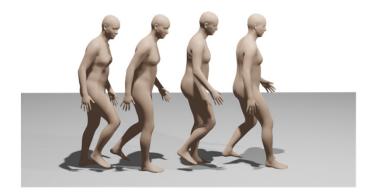


NeRM: Learning Neural Representations for High-Framerate Human Motion Synthesis

Dong Wei¹, Huaijiang Sun¹, Bin Li², Xiaoning Sun¹, Shengxiang Hu¹, Weiqing Li¹, Jianfeng Lu¹

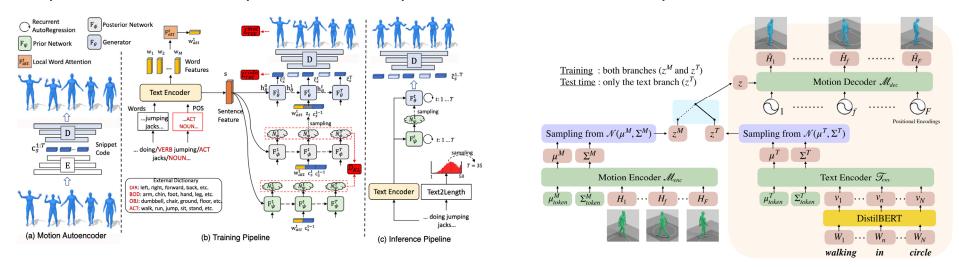
School of Computer Science and Engineering, Nanjing University of Science and Technology
 Tianjin AiForward Science and Technology Co., Ltd

Problem Definition


Given an arbitrary condition *c*, such as:

- > text description
- > class label
- **>** ...

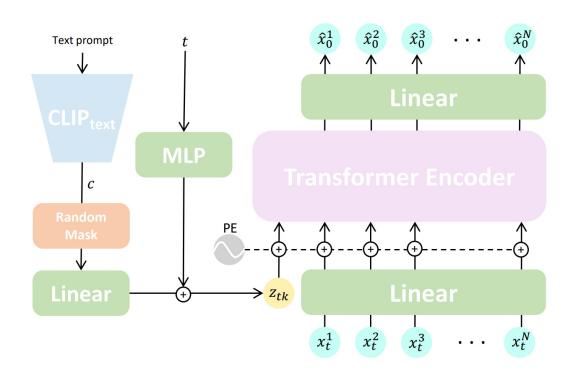
Goal: Generate plausible and diverse human motions.

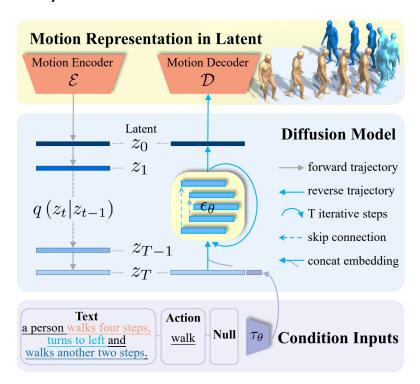

Text: "A person walks to the right slowly."

Related Work

T2M (Guo et al. 2022) & TEMOS (Petrovich et al. 2022): a conditional VAE model

Problem:


- VAE brings about posterior collapse with a powerful decoder \rightarrow not diverse enough
- Limited generative capability → not plausible enough


Chuan Guo, Zhihao Zou, Xinxin Zuo, et al. Generating diverse and natural 3D human motions from text. CVPR, 2022.

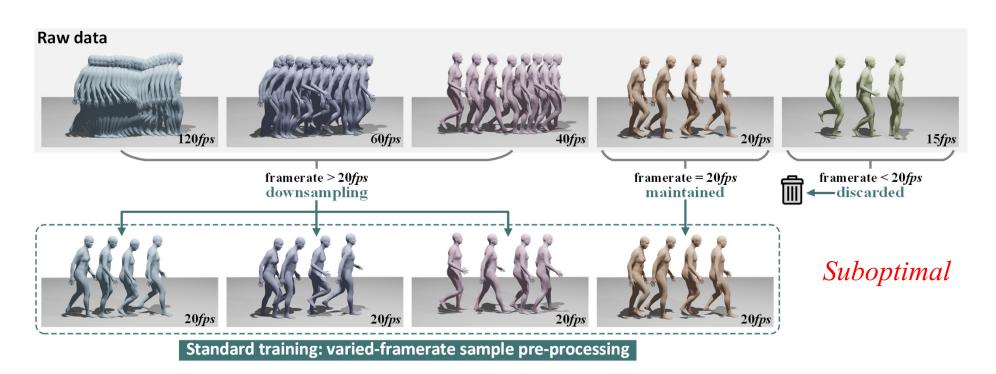
Mathis Petrovich, Michael J. Black, Gul Varol. TEMOS: Generating diverse human motions from textual descriptions. ECCV, 2022.

Related Work

MDM (Tevet et al. 2023) & MLD (Chen et al. 2023): a diffusion model

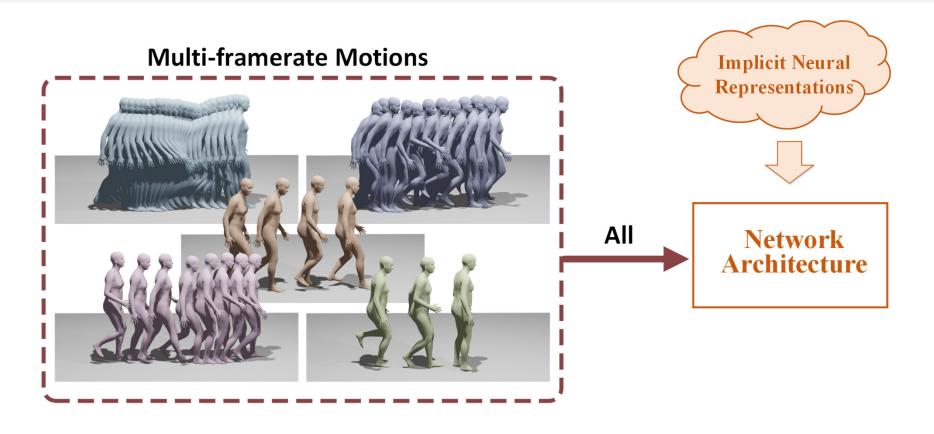
Address the limitations of VAE models.

Guy Tevet, Sigal Raab, Brian Gordon, et al. Human motion diffusion model. ICLR, 2023.

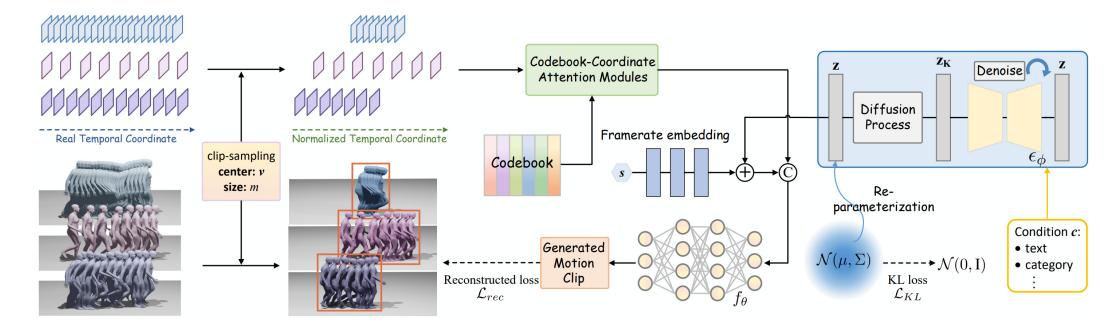

Xin Chen, Biao Jiang, Wen Liu, et al. Executing your commands via motion diffusion in latent space. CVPR, 2023.

Challenge

Existing methods cannot support high-framerate motion generation, due to:

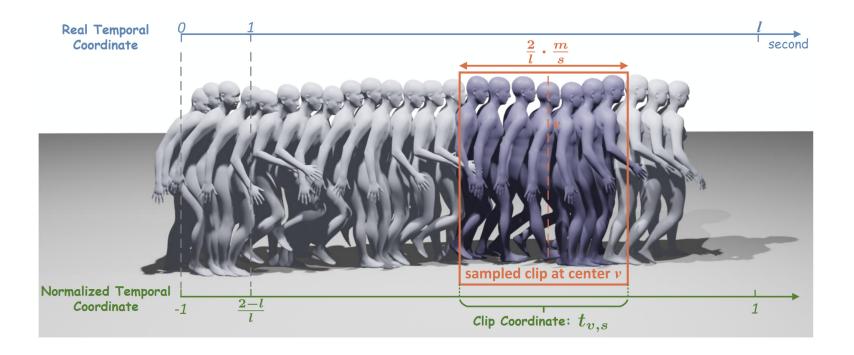

- Memory overloads
- Varied-size training dataset

Therefore, they employ a preprocessing step.



Key Insight

It is desired to embrace the natural diversity of motion framerates and process them at their **native** framerate.


Overview

Two-stage pipeline of our NeRM. In the first stage (left), we sample motion clips at random framerates from full-size motion sequences for training. The second stage (right) takes the latent variables as input to our diffusion model and can be guided by various conditions.

Multi-framerate Training

To learn from multi-framerate motions in training sets, we design our approach by exploiting the temporal consistency in motions to generate motion *clips*.

Loss Function

The first stage: Variational implicit neural representation

$$\mathcal{L}^{i} = \mathcal{L}_{rec}^{i} + \lambda_{KL} \mathcal{L}_{KL}^{i} = \|\hat{x}_{clip}^{i} - x_{clip}^{i}\|^{2} + \lambda_{KL} D_{KL} (\mathcal{N}(\mu_{i}, \Sigma_{i}) || p(z))$$

The first stage: Model parameters optimization

$$\{(\mu_i^*, \Sigma_i^*)\}_{i=1,2,\dots,n} = \underset{\mu_i, \Sigma_i}{\operatorname{arg\,min}} \mathcal{L}^i, \qquad \theta^* = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^n \underset{\mu_i, \Sigma_i}{\operatorname{min}} \mathcal{L}^i$$

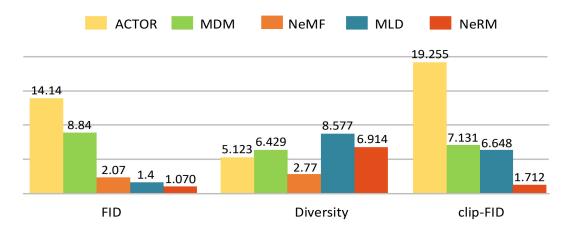
The second stage: Motion diffusion in latent space

$$\min_{\phi} \mathbb{E}_{k, \boldsymbol{z} \sim Z, \epsilon \sim \mathcal{N}(0, \mathbf{I})} \left[\| \epsilon - \epsilon_{\phi} (\sqrt{\bar{\alpha}_k} \boldsymbol{z} + \sqrt{1 - \bar{\alpha}_k} \epsilon, k) \|^2 \right]$$

The second stage: Classifier-free guidance

$$\epsilon_{\phi}(\boldsymbol{z}_{k}, k, c) = r\epsilon_{\phi}(\boldsymbol{z}_{k}, k, c) + (1 - r)\epsilon_{\theta}(\boldsymbol{z}_{k}, k, \emptyset)$$

Text-to-Motion


Method	HumanML3D (Guo et al., 2022)					KIT (Plappert et al., 2016)				
	FID↓	R-Precision (Top-3) ↑	Multimodal Dist↓	$Diversity \rightarrow$	ММ↑	FID↓	R-Precision (Top-3) ↑	Multimodal Dist↓	$Diversity \rightarrow$	ММ↑
Real	$0.002^{\pm.000}$	$0.797^{\pm.002}$	$2.974^{\pm.008}$	$9.503^{\pm.065}$	-	$0.031^{\pm.004}$	$0.779^{\pm.006}$	$2.788^{\pm.012}$	$11.08^{\pm .097}$	-
JL2P (Ahuja & Morency, 2019)	$11.02^{\pm.046}$	$0.486^{\pm.002}$	$5.296^{\pm.008}$	$7.676^{\pm.058}$	-	$6.545^{\pm.072}$	$0.483^{\pm .005}$	$5.147^{\pm.030}$	$9.073^{\pm.100}$	-
Hier (Ghosh et al., 2021)	$6.532^{\pm.024}$	$0.552^{\pm.004}$	$5.012^{\pm.018}$	$8.332^{\pm.042}$	-,	$5.203^{\pm.107}$	$0.531^{\pm.007}$	$4.986^{\pm.027}$	$9.563^{\pm.072}$	-
T2M (Guo et al., 2022)	$1.067^{\pm.002}$	$0.740^{\pm.003}$	$3.340^{\pm.008}$	$9.188^{\pm.002}$	$2.090^{\pm.083}$	$2.770^{\pm.109}$	$0.693^{\pm .007}$	$3.401^{\pm.008}$	$10.91^{\pm.119}$	$1.482^{\pm.065}$
MoFusion (Dabral et al., 2023)	-	0.492	-	8.82	2.521	-	-	-	-	-
MDM (Tevet et al., 2023)	$0.544^{\pm.044}$	$0.611^{\pm.007}$	$5.566^{\pm.027}$	$9.559^{\pm.086}$	$2.799^{\pm.072}$	$0.497^{\pm.021}$	$0.396^{\pm.004}$	$9.191^{\pm.022}$	$10.85^{\pm.109}$	$1.907^{\pm.214}$
PhysDiff (Yuan et al., 2023)	0.433	0.631	-	-	-	-	-	-	-	-
MLD (Chen et al., 2023)	$0.473^{\pm.013}$	$0.772^{\pm.002}$	$3.196^{\pm.010}$	$9.724^{\pm.082}$	$2.413^{\pm .079}$	$0.404^{\pm.027}$	$0.734^{\pm.007}$	$3.204^{\pm.027}$	$10.80^{\pm.117}$	$2.192^{\pm.071}$
NeRM (fixed-framerate train)	$0.489^{\pm.013}$	$0.774^{\pm.003}$	$3.186^{\pm.015}$	$9.692^{\pm.082}$	$2.330^{\pm.075}$	$0.522^{\pm.029}$	$0.727^{\pm .005}$	$3.843^{\pm.027}$	$10.90^{\pm .094}$	$1.931^{\pm .133}$
NeRM (native-framerate train)	$0.389^{\pm.011}$	$0.779^{\pm.003}$	$3.178^{\pm.016}$	$9.547^{\pm .073}$	$2.193^{\pm.081}$	$0.472^{\pm.019}$	$0.736^{\pm.007}$	$3.189^{\pm.031}$	$10.94^{\pm.114}$	$1.785^{\pm.082}$

- > SOTA FID
- > Using original multi-framerate datasets can achieve much better performance.

Action-to-Motion

Method		UES	TC (Ji et al., 2	2018)	HumanAct12 (Guo et al., 2020)				
	$\overline{\mathrm{FID}_{\mathrm{train}}}\downarrow$	$FID_{test} \downarrow$	Accuracy ↑	$Diversity \to$	$MM \rightarrow$	$FID_{train}\downarrow$	Accuracy ↑	$Diversity \rightarrow$	$MM \rightarrow$
Real	$2.92^{\pm .26}$	$2.79^{\pm .29}$	$0.988^{\pm.001}$	$33.34^{\pm.320}$	$14.16^{\pm .06}$	$0.020^{\pm.010}$	$0.997^{\pm.001}$	$6.850^{\pm.050}$	$2.450^{\pm.040}$
ACTOR (Petrovich et al., 2021)	$20.5^{\pm 2.3}$	$23.43^{\pm 2.20}$	$0.911^{\pm.003}$	$31.96^{\pm.33}$	$14.52^{\pm.09}$	$0.120^{\pm.000}$	$0.955^{\pm.008}$	$6.840^{\pm.030}$	$2.530^{\pm.020}$
MDM (Tevet et al., 2023)	$9.98^{\pm 1.33}$	$12.81^{\pm 1.46}$	$0.950^{\pm.000}$	$33.02^{\pm .28}$	$14.26^{\pm.12}$	$0.100^{\pm.000}$	$0.990^{\pm.000}$	$6.680^{\pm.050}$	$2.520^{\pm.010}$
MLD (Chen et al., 2023)	$12.89^{\pm.109}$	$15.79^{\pm.079}$	$0.954^{\pm.001}$	$33.52^{\pm .14}$	$13.57^{\pm.06}$	$0.077^{\pm.004}$	$0.964^{\pm.002}$	$6.831^{\pm.050}$	$2.824^{\pm.038}$
INR-MLP (Cervantes et al., 2022)	$9.55^{\pm.06}$	$15.00^{\pm.09}$	$0.941^{\pm.001}$	$31.59^{\pm.19}$	$14.68^{\pm.07}$	$0.114^{\pm.001}$	$0.970^{\pm.001}$	$6.786^{\pm.057}$	$2.507^{\pm.034}$
NeRM (Ours)	$11.75^{\pm.31}$	$14.23^{\pm.174}$	$0.956^{\pm.001}$	$33.20^{\pm.21}$	$14.41^{\pm.06}$	$0.106^{\pm.000}$	$0.977^{\pm.001}$	$6.866^{\pm.032}$	$2.492^{\pm.048}$

Unconditional Generation

Ablation Study

Effectiveness of time encoding

Simple Codeboo	Codebook	M	otion Re	construct	tion (MR	E)	Motion Synthesis (clip-FID)				
Simple	Simple Codebook	20	40	60	100	120	20	40	60	100	120
×	Х	0.134	0.141	0.164	0.094	0.091	0.471	0.803	1.070	1.769	2.944
✓	X	0.053	0.049	0.039	0.057	0.043	0.397	0.519	0.701	0.142	1.717
X	✓	0.041	0.036	0.034	0.035	0.038	0.389	0.493	0.680	0.903	1.315

Effectiveness of variational INRs

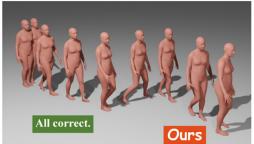
Variational INRs	Motion Reconstruction (MRE)					Motion Synthesis (clip-FID)				
,	20	40	60	100	120	20	40	60	100	120
×	0.032	0.030	0.031	0.036	0.027	1.280	2.924	7.012	10.482	14.654
✓	0.041	0.036	0.034	0.035	0.038	0.389	0.493	0.680	0.903	1.315

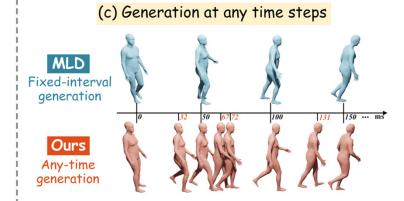
Ablation Study

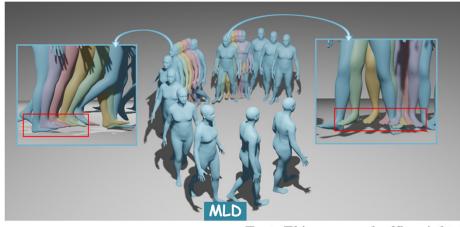
Effectiveness of different framerates

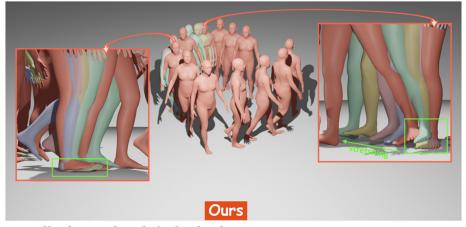
Method	20	40	60	100	120
T2M	1.067	2.831	6.442	9.182	11.264
MDM	0.544	1.882	4.605	5.966	8.401
MLD	0.473	1.465	3.816	5.138	7.878
NeRM	0.389	0.493	0.680	0.903	1.315

Effectiveness of time normalization


Time Normalization	MRE@20fps	FID	Diversity
×	0.118	0.958	9.892
\checkmark	0.041	0.389	9.547


Visualization


(a) Conventional generation


Text: Person walks up then takes a large step to their left and then goes back onto the same path they were on.

Text: This person shuffles right then walks forward and circles back.

(b) High-framerate details

Thank You!