

How I Warped Your Noise:

A Temporally-correlated Noise Prior for Diffusion Models

ICLR 2024 (Oral)

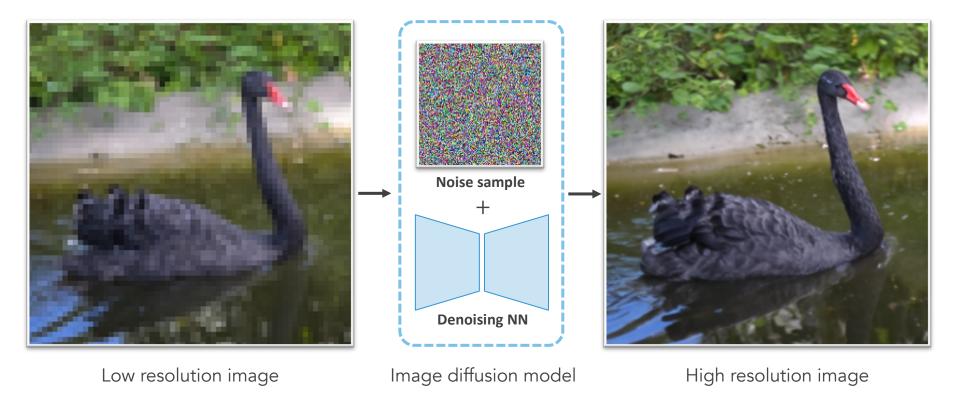
Pascal Chang

Jingwei Tang

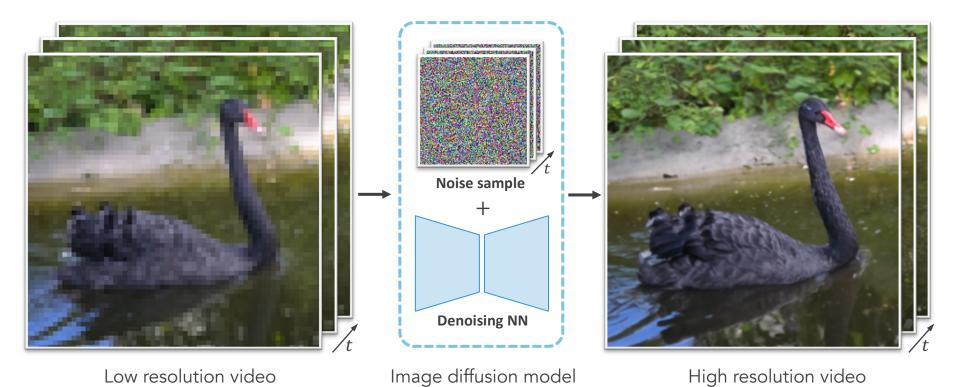
Markus Gross

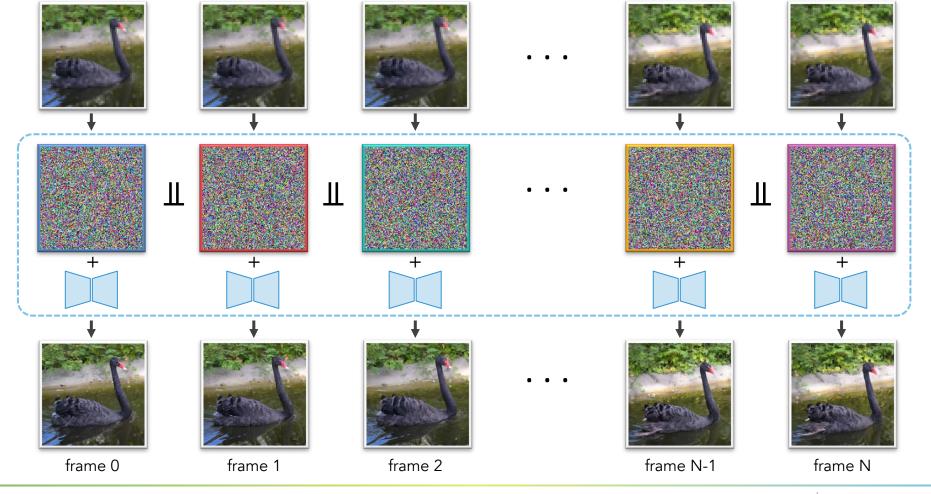
Vinicius C. Azevedo

From diffusion image translation...

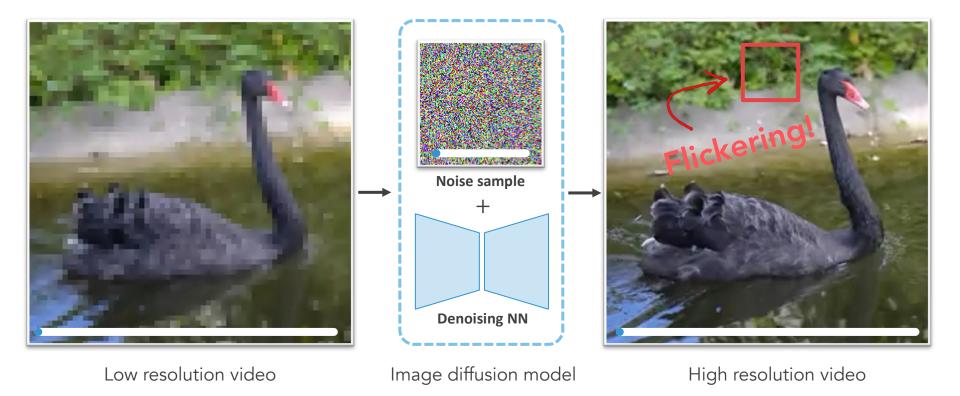


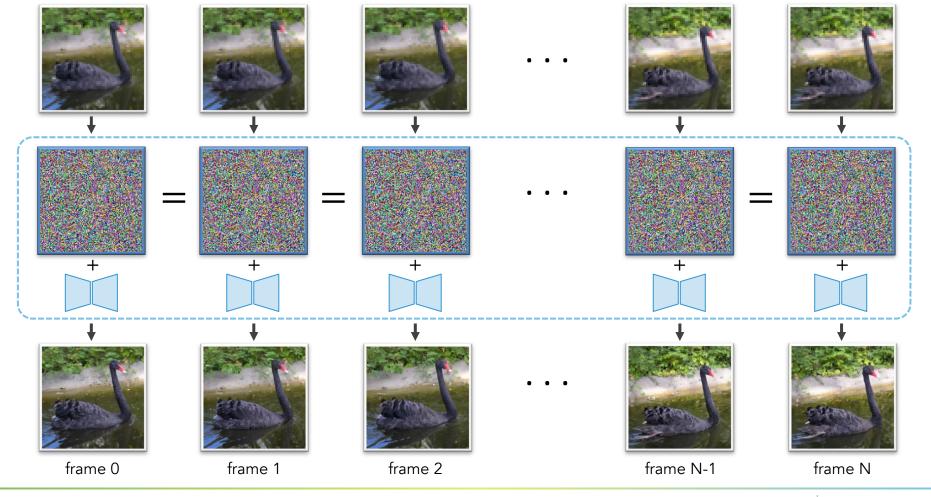
...To zero-shot video translation



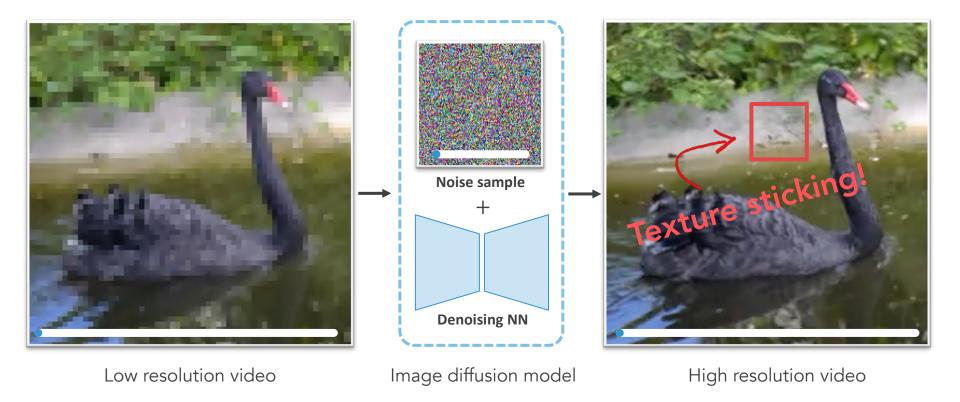


...To zero-shot video translation



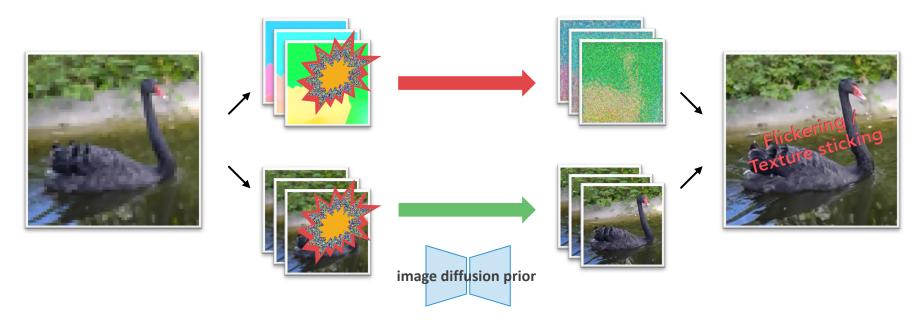


...To zero-shot video translation



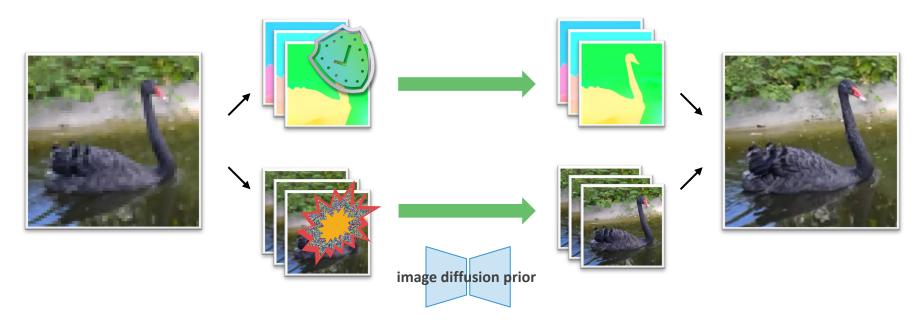
Zero-shot video translation

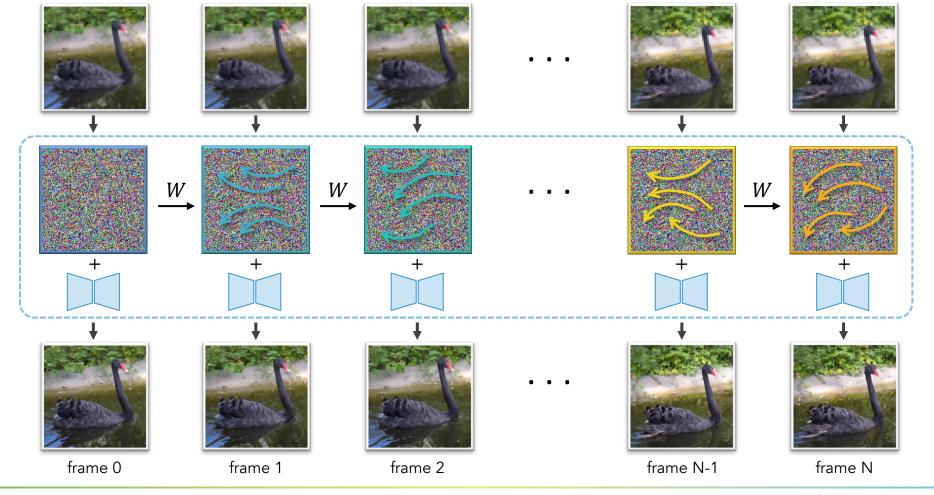
Issue: adding noise destroys both <u>frame content</u> and <u>inter-frame correlation</u> but pretrained image diffusion models only learns to recover the content.



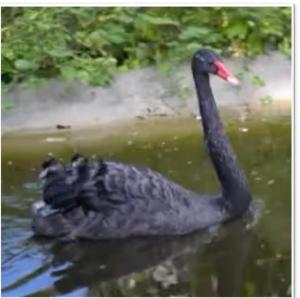
Zero-shot video translation

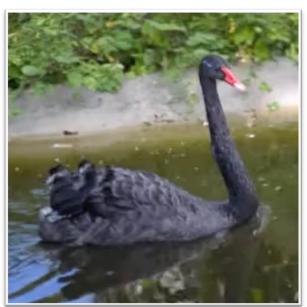
Issue: adding noise destroys both <u>frame content</u> and <u>inter-frame correlation</u> but pretrained image diffusion models only learns to recover the content.





Zero-shot video translation





Random noise Fixed noise Warped noise (ours)

Discrete Gaussian noise

Pixels are:

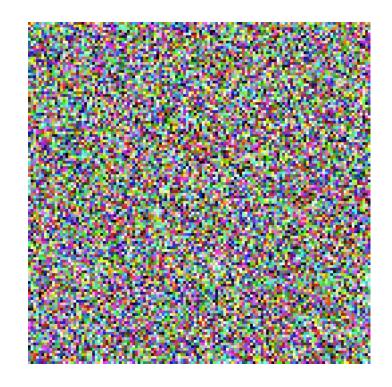
normally distributed:

$$p_{ij} \sim \mathcal{N}(0, I)$$

- ⇒ unit variance
- independently sampled:

$$p_{ij} \perp p_{kl}$$

⇒ spatially uncorrelated



Discrete Gaussian noise

Pixels are:

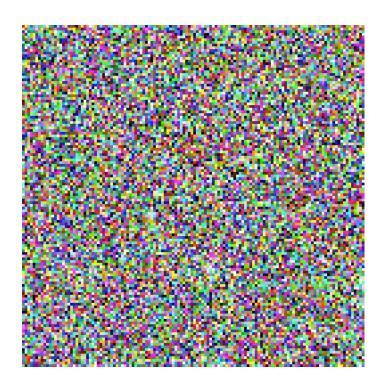
normally distributed:

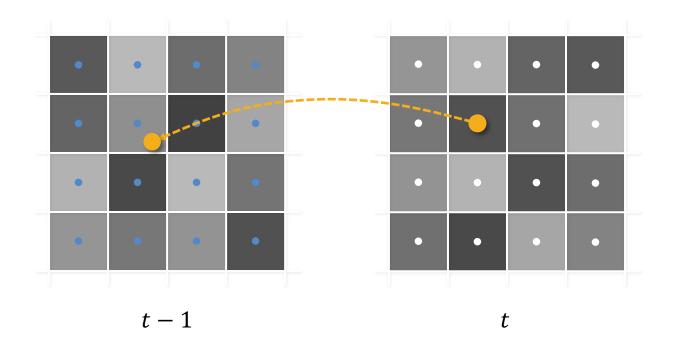
$$p_{ij} \sim \mathcal{N}(0, I)$$

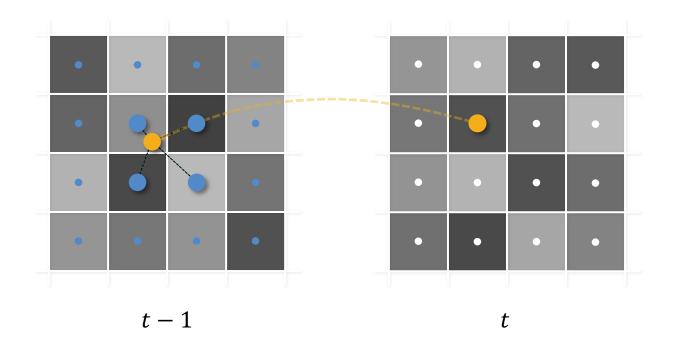
- ⇒ unit variance
- independently sampled:

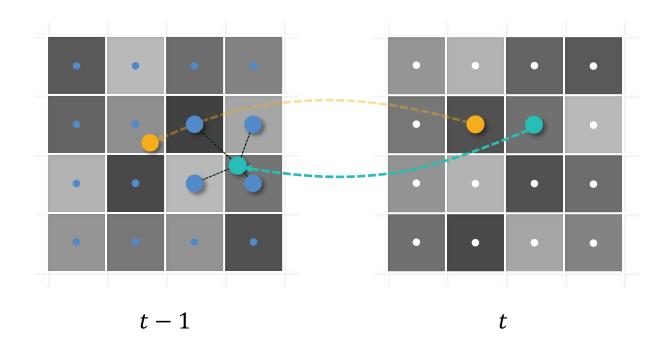
$$p_{ij} \perp p_{kl}$$

⇒ spatially uncorrelated

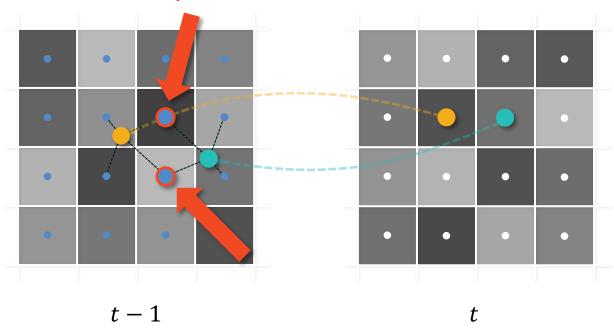


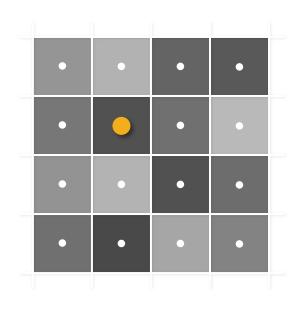




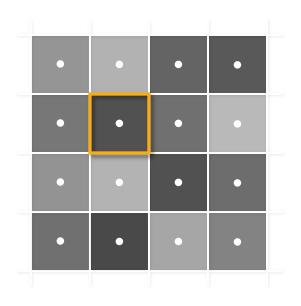


Induces spatial correlations!



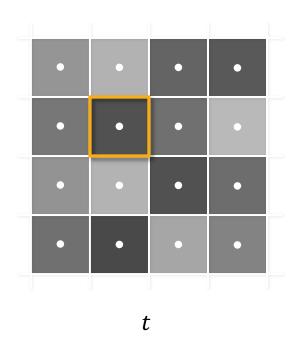


A pixel as a discrete point:



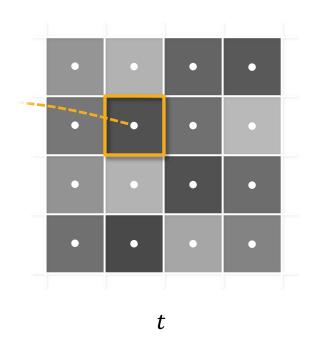
A pixel as a discrete point:

$$\bullet = \int_{x \in \square} ? dx$$



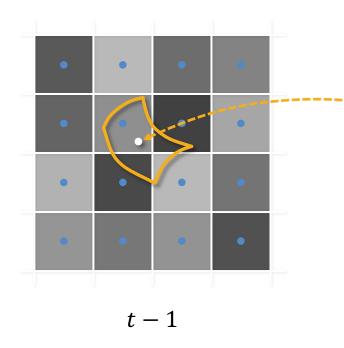
A pixel as a discrete point:

$$\bullet = \int_{x \in \Box} ? dx$$



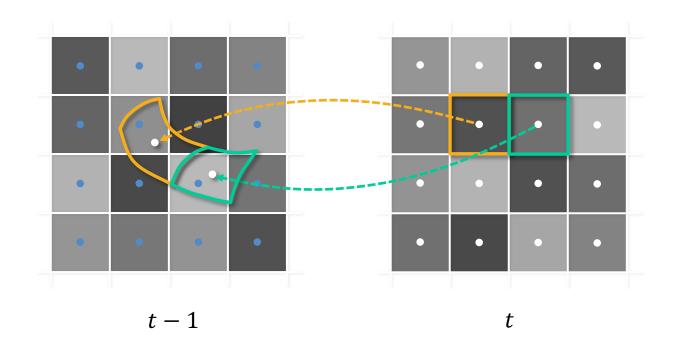
A pixel as a discrete point:

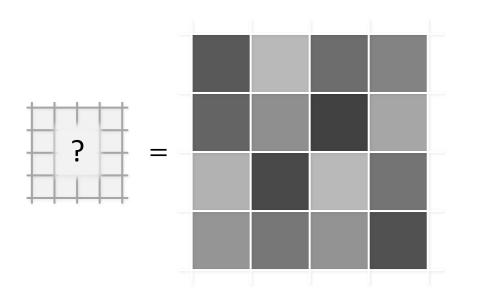
$$\bullet = \int_{x \in \Box} ? dx$$

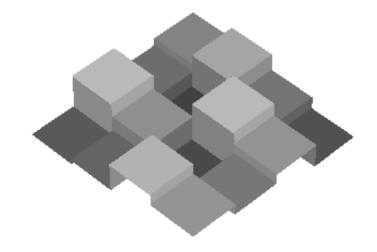


A pixel as a discrete point:

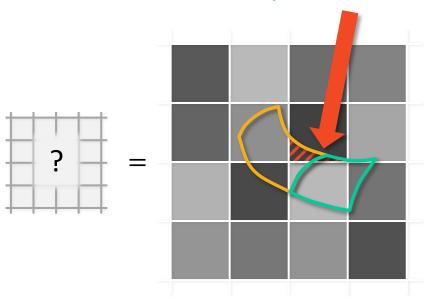
$$\bullet = \int_{x \in \mathbb{R}} dx$$

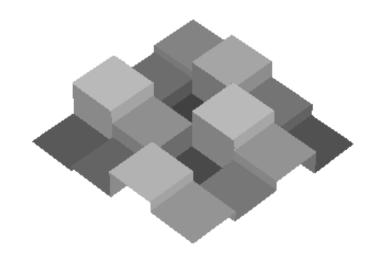


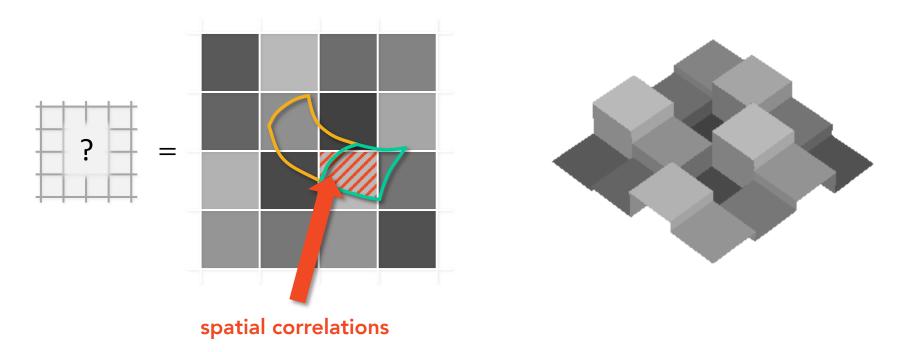


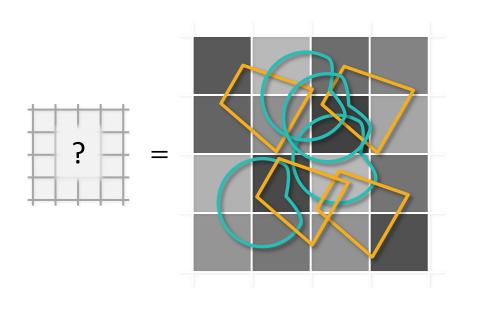


spatial correlations

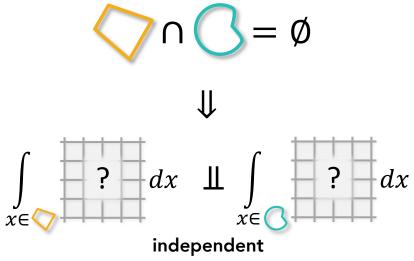


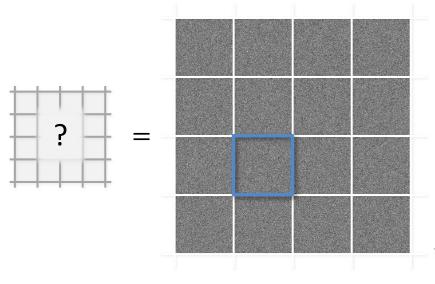






Desired property:



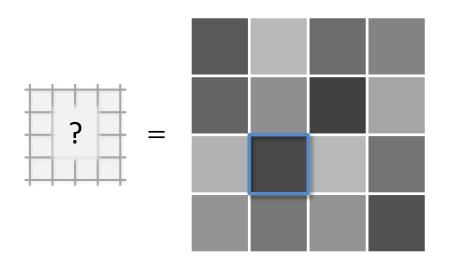


Reproductive property of normal distribution:

$$x_1 \sim \mathcal{N}(0, \sigma_1^2), \qquad x_2 \sim \mathcal{N}(0, \sigma_2^2)$$

$$x_1 \perp x_2 \Rightarrow x_1 + x_2 \sim \mathcal{N}(0, \sigma_1^2 + \sigma_2^2)$$

continuous white noise field

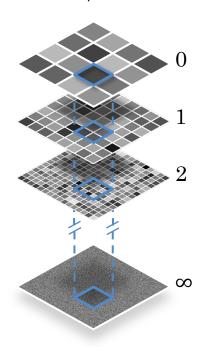


Reproductive property of normal distribution:

$$x_1 \sim \mathcal{N}(0, \sigma_1^2), \qquad x_2 \sim \mathcal{N}(0, \sigma_2^2)$$

$$x_1 \perp x_2 \Rightarrow x_1 + x_2 \sim \mathcal{N}(0, \sigma_1^2 + \sigma_2^2)$$

∫-noise representation



Reproductive property of normal distribution:

$$x_1 \sim \mathcal{N}(0, \sigma_1^2), \qquad x_2 \sim \mathcal{N}(0, \sigma_2^2)$$

$$x_1 \perp x_2 \Rightarrow x_1 + x_2 \sim \mathcal{N}(0, \sigma_1^2 + \sigma_2^2)$$

∫-noise representation

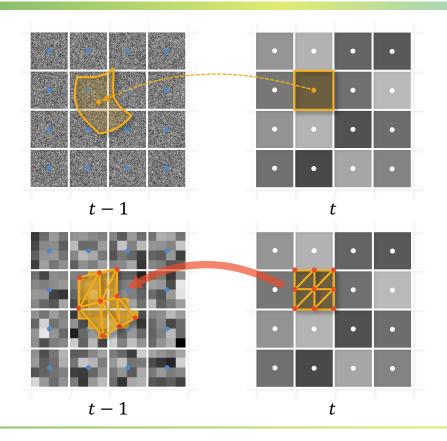
conditional noise upsampling ∞

Reproductive property of normal distribution:

$$x_1 \sim \mathcal{N}(0, \sigma_1^2), \qquad x_2 \sim \mathcal{N}(0, \sigma_2^2)$$

$$x_1 \perp x_2 \implies x_1 + x_2 \sim \mathcal{N}(0, \sigma_1^2 + \sigma_2^2)$$

Noise warping: from theory to practice



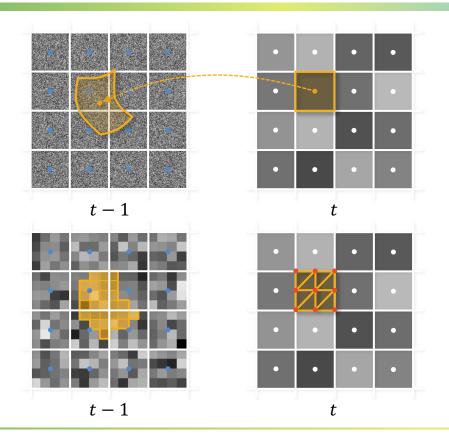
Continuous form:

$$\bullet = \int_{x \in \mathbb{Z}} dx$$

Discrete implementation:

$$\bullet = \sum_{x \in \mathbb{Z}_{t-1}}$$

Noise warping: from theory to practice



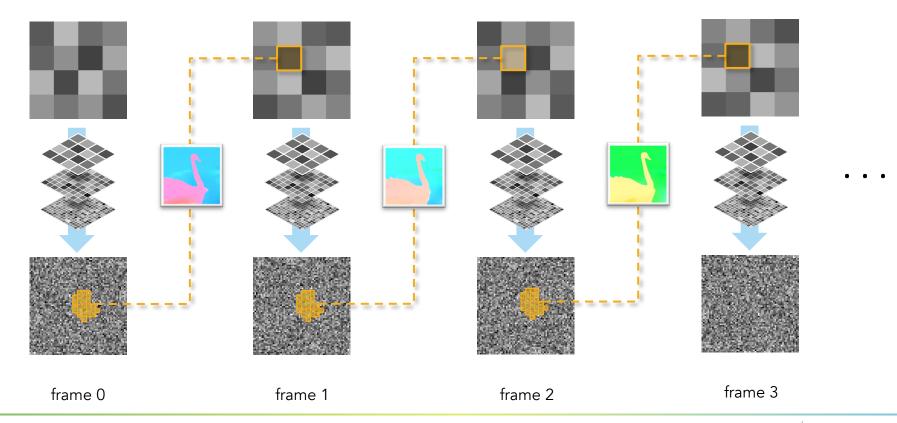
Continuous form:

(noise transport equation)

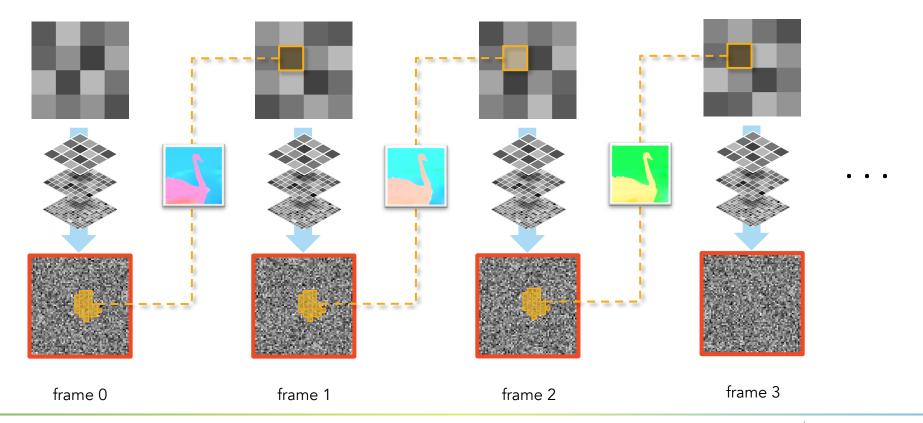
Discrete implementation:

$$\bullet = \frac{1}{\sqrt{\#}} \sum_{x \in \mathbb{Z}} \mathbb{Z}_{t-1}$$

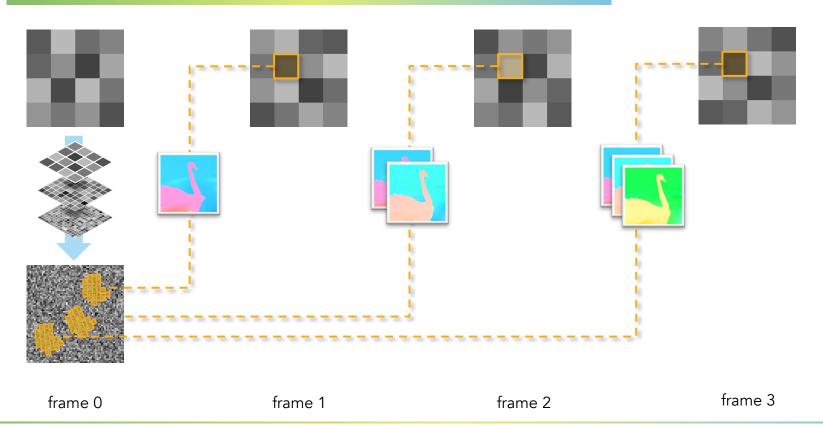
Noise warping: extending to long sequences



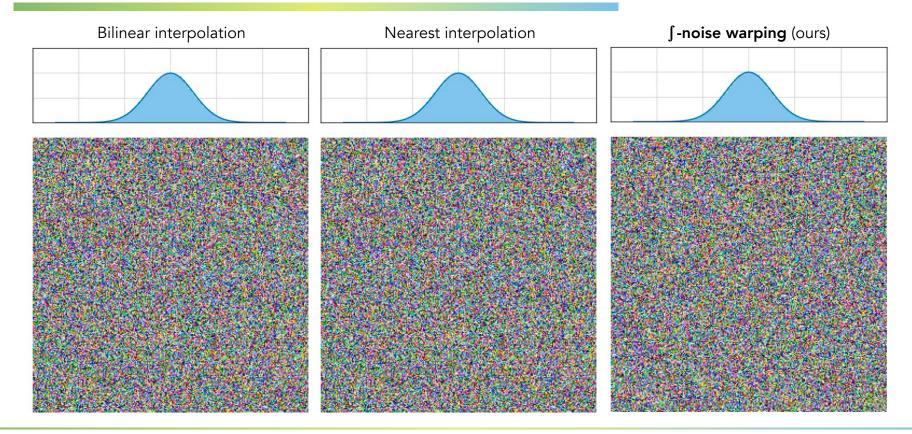
Noise warping: extending to long sequences

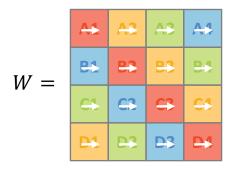


Noise warping: extending to long sequences



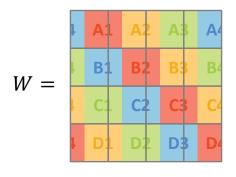
Results: visualizing the noise





$$G_0 = \mathcal{N}(0, I)$$

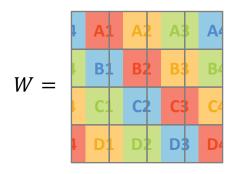
$$G_1 = \coprod G_0$$



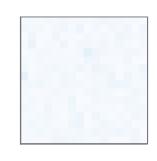
→ temporal correlation

$$G_0 = \mathcal{N}(0, I)$$

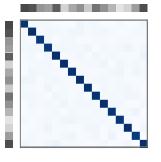
$$G_1 = \coprod G_0$$



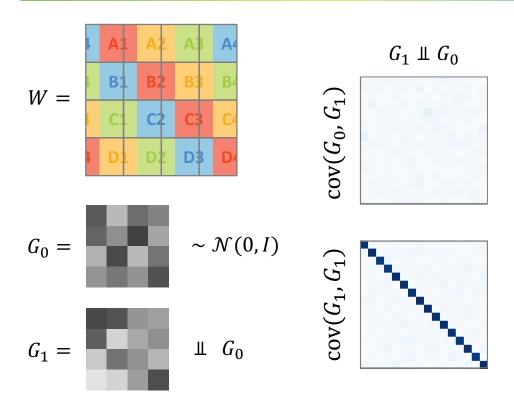
$$G_1 = \coprod G_0$$

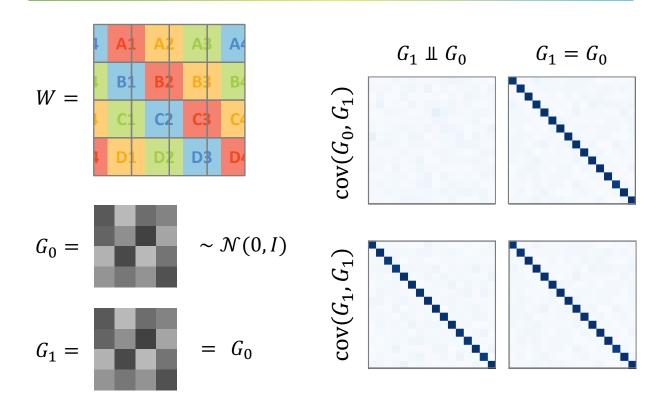


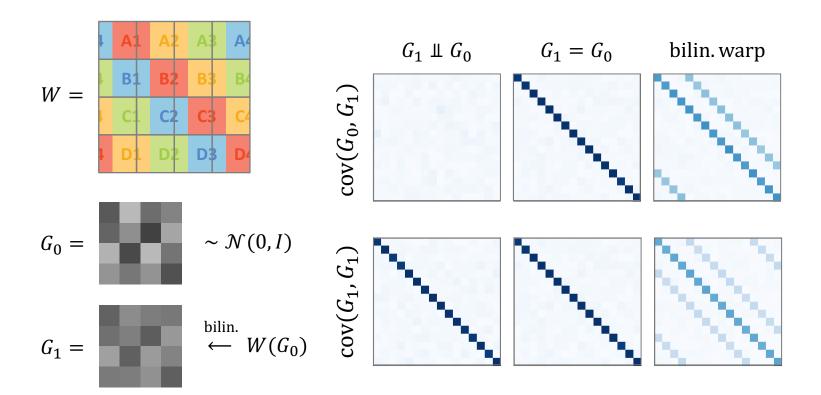
→ temporal correlation

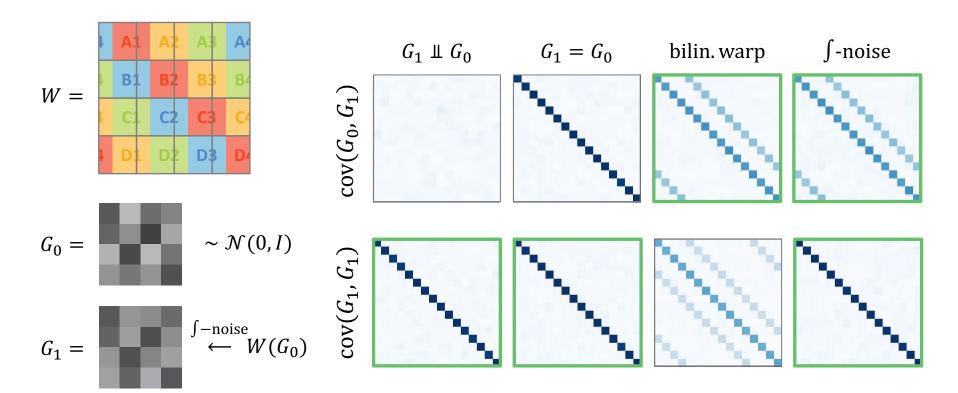


→ spatial correlation









Results: photorealistic rendering w/ SDEdit [Meng et al. 2021]

Random noise

Fixed noise

∫-noise warping (ours)

Results: photorealistic rendering w/ SDEdit [Meng et al. 2021]

Bilinear interpolation

Nearest interpolation

∫-noise warping (ours)

Results: photorealistic rendering w/ SDEdit [Meng et al. 2021]

PYoCo (progressive) [Ge et al. 2023]

Control-A-Video [Chen et al. 2023]

∫-noise warping (ours)

Conclusion

- A novel noise representation dubbed ∫-noise, that interprets a discrete noise sample as a discretized view of an underlying continuous noise field;
- A theoretically-grounded noise transport equation tailored to Gaussian noise and a practical implementation for distribution-preserving noise warping;
- Showcased improved temporal coherency in zero-shot video translation tasks using pre-trained diffusion image models.

Limitations & Future Work

- Can be sensitive to the accuracy of the flow;
- The importance of the noise prior depends on the pipeline chosen;
- Extend the noise prior to larger classes of noises, e.g. latent diffusion;
- Explore new applications of the method.

Thank you!

How I Warped Your Noise:

A Temporally-correlated Noise Prior for Diffusion Models

Pascal Chang

Jingwei Tang

Markus Gross

Vinicius C. Azevedo

Project page: warpyournoise.github.io

