

LMUFormer: Low Complexity Yet Powerful Spiking Model With Legendre Memory Units

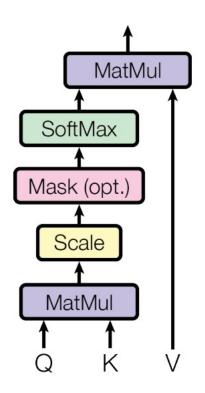
Zeyu Liu*, Gourav Datta*,^, Anni Li, Peter A. Beerel

University of Southern California

- * Equally contributing authors
- [^]Currently employed at Amazon Inc.

Motivation

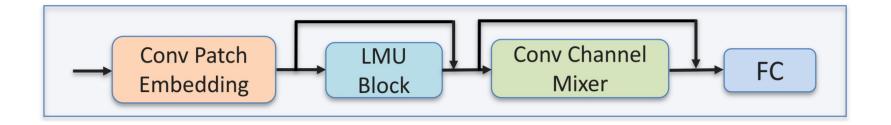
Scaled Dot-Product Attention



Transformers with self-attention mechanism have established themselves as leading deep learning models across a multitude of applications. But two main disadvantages remain:

- Quadratic computational and memory complexities relative to the sequence length N;
- 2. Global self-attention mechanism poses challenges for **streaming** applications, which require the processing of data in **real-time**.

Overall Structure of LMUFormer



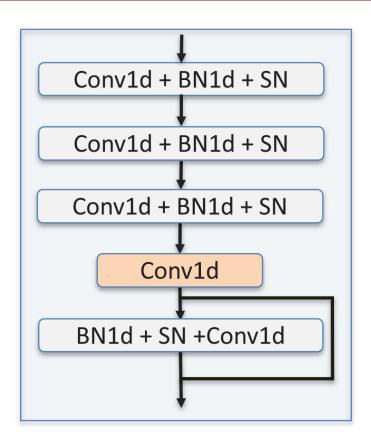
In comparison to SOTA transformer-based models:

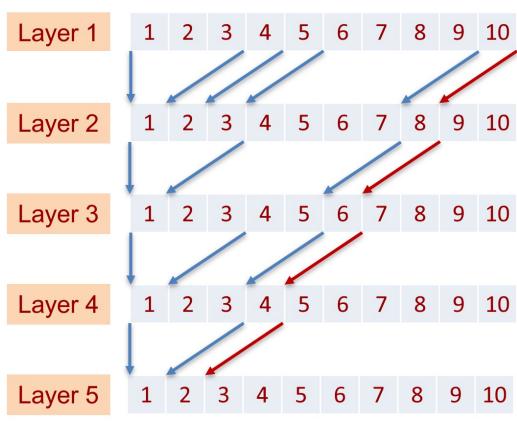
Powerful: on Speech Commands V2, we get comparable results within the ANN domain and SOTA results within SNN domain

Efficient: 53X reduction in parameters & 65X decrement in FLOPS

Streaming: Process data in real-time, maintain 99% accuracy while achieving 32.03% duction in the sequence length

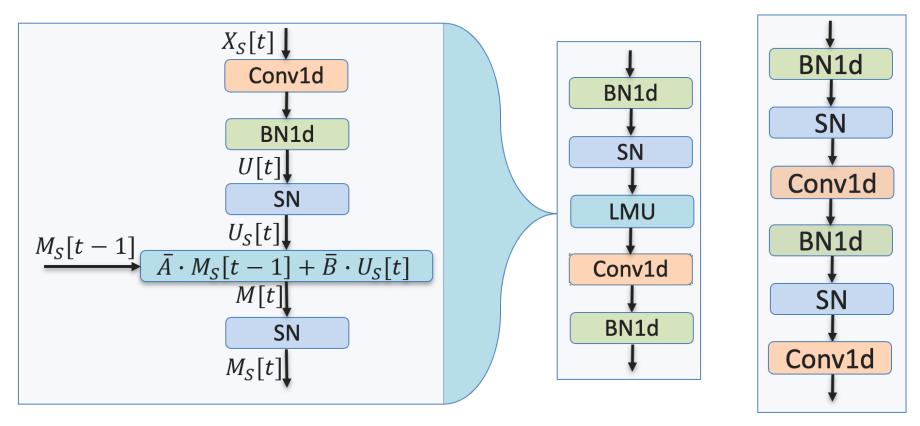
Convolutional Patch Embedding & delays





We use "*Conv in time*" for the patch splitting & embedding, which incurs 8 delays, but this is negligible since sequence lengths are usually in the hundreds or thousands.

Spiking LMU Block & Conv Channel Mixer



Considering the *inherent temporal dynamics of both LMU and SNN*, we devised a **merged** process to optimize the overall operational efficiency of their integration.

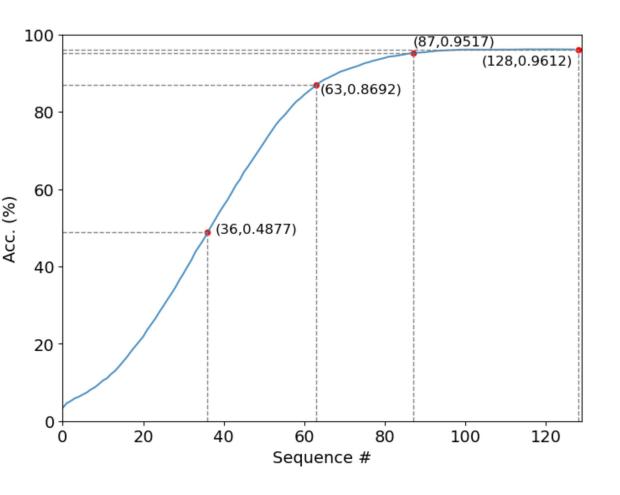
Main results in Speech Commands V2

Model	Sequential Inference	Parallel Training	SNN	Accuracy (%)
RNN (Bittar & Garner, 2022)	Yes	No	No	92.09
Attention RNN (De Andrade et al., 2018)	No	No	No	93.9
liBRU (Bittar & Garner, 2022)	Yes	No	No	95.06
Res15 (Vygon & Mikhaylovskiy, 2021)	Yes	Yes	No	97.00
KWT2 (Berg et al., 2021)	No	Yes	No	97.74
AST (Gong et al., 2021)	No	Yes	No	98.11
LIF (Bittar & Garner, 2022)	Yes	Yes	Yes	83.03
SFA (Salaj et al., 2021)	Yes	No	Yes	91.21
Spikformer* (Zhou et al., 2022)	No	Yes	Yes	93.38
RadLIF (Bittar & Garner, 2022)	Yes	No	Yes	94.51
Spike-driven ViT* (Yao et al., 2023)	No	Yes	Yes	94.85
LMUFormer	Yes	Yes	No	96.53
LMUFormer (with states)	Yes	Yes	No	96.92
Spiking LMUFormer	Yes	Yes	Yes	96.12 SOT

Model	Params. (M)	OPs (G)
AST (Gong et al., 2021)	86.93	12.4
LMUFormer 5	3.66×1.62 65.0	1×0.189
Spiking LMUFormer	1.69	0.0309

Accuracy comparable to ANN transformer-based models with a significantly reduced parameters and lower FLOPS

Streaming Application



Spiking LMUFormer achieves 99% (95.17% / 96.12%) of its original performance

while getting a 32.03% (1 - 87/128) reduction in the sequence length

Thank you!

