

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, Shuming Shi Sun Yat-sen University, Tencent Al Lab

Backgrounds: Large Language Models

LLaMA: Open and Efficient Foundation Language Models

Hugo Touvron; Thibaut Lavril; Gautier Izacard; Xavier Martinet Marie-Anne Lachaux, Timothee Lacroix, Baptiste Rozière, Naman Goyal Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin Edouard Grave; Guillaume Lample*

Meta AI

LLAMA 2: Open Foundation and Fine-Tuned Chat Models

Hugo Touvron* Louis Martin† Kevin Stone

Peter Albert Amjad Almahairi Yasmine Babaei Nikolay Bashlykov Soumya Batra
Prajjwal Bhargava Shruti Bhosale Dan Bikel Lukas Blecher Cristian Canton Ferrer Moya Chen
Guillem Cucurull David Esiobu Jude Fernandes Jeremy Fu Wenyin Fu Brian Fuller
Cynthia Gao Vedanuj Goswami Naman Goyal Anthony Hartshorn Saghar Hosseini Rui Hou
Hakan Inan Marcin Kardas Viktor Kerkez Madian Khabsa Isabel Kloumann Artem Korenev
Punit Singh Koura Marie-Anne Lachaux Thibaut Lavril Jenya Lee Diana Liskovich
Yinghai Lu Yuning Mao Xavier Martinet Todor Mihaylov Pushkar Mishra
Igor Molybog Yixin Nie Andrew Poulton Jeremy Reizenstein Rashi Rungta Kalyan Saladi
Alan Schelten Ruan Silva Eric Michael Smith Ranjan Subramanian Xiaoqing Ellen Tan Binh Tang
Ross Taylor Adina Williams Jian Xiang Kuan Puxin Xu Zheng Yan Iliyan Zarov Yuchen Zhang
Angela Fan Melanie Kambadur Sharan Narang Aurelien Rodriguez Robert Stojnic
Sergey Edunov Thomas Scialom*

GenAI, Meta

Mistral 7B

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed

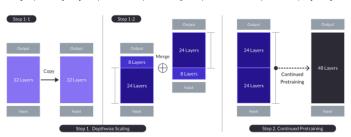
Single LLM from Scratch

SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling

Dahyun Kim*, Chanjun Park*[†], Sanghoon Kim*[†], Wonsung Lee*[†], Wonho Song Yunsu Kim, Hyeonwoo Kim, Yungi Kim, Hyeonju Lee, Jihoo Kim Changbae Ahn, Seonghoon Yang, Sukyung Lee, Hyunbyung Park, Gyoungjin Gim Mikyoung Cha, Hwalsuk Lee[‡], Sunghun Kim[‡]

Upstage AI, South Korea

{kdahyun, chanjun.park,limerobot, wonsung.lee, hwalsuk.lee, hunkim}@upstage.ai



Depth Up-Scaling Merging

Evolutionary Optimization of Model Merging Recipes

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, David Ha Sakana AI Tokyo, Japan

{takiba, mkshing, yujintang, qisun, hadavid}@sakana.ai

Q1: Mishka bought 3 pairs of shorts, 3 pairs of long pants, and 3 pairs of shoes. ... How much were spent on all the clothing?

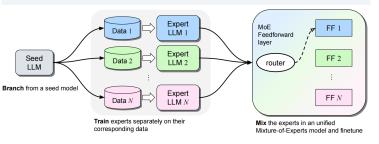
Q2: Cynthia eats one serving of ice cream every night. ... How much will she have spent on ice cream after 60 days?

Evolutionary Model Merging

Branch-Train-MiX: Mixing Expert LLMs into a Mixture-of-Experts LLM

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière, Jacob Kahn, Daniel Li. Wen-tau Yih, Jason Weston, Xian Li

FAIR at Meta



Branch-Train-Mix

Multiple LLMs Fusion

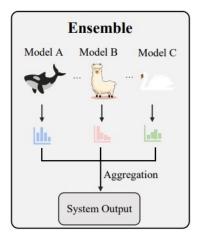
Backgrounds: Knowledge Fusion

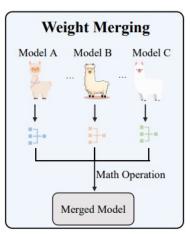
□Knowledge Fusion of LLMs

- ☐ Combining the capabilities of existing LLMs and transferring them into a potent LLM
- ☐ Model Ensemble: aggregate the **outputs of multiple models**
- ☐ Model Merging: arithmetic operation on the **parameter space** of multiple models

□Limitations of Existing Methods

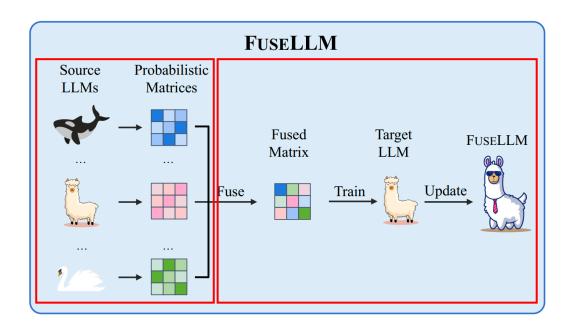
- ☐ Model Ensemble: **parallel deployment** of multiple LLMs
- ☐ Model Merging: identical architecture and minor parameter discrepancy





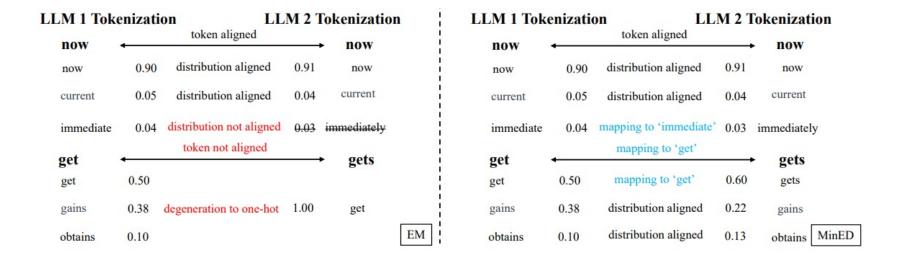
□FuseLLM Design

- ☐ Motivation: **different probabilistic distributions** for the same text, originating from various
 - LLMs, can be used to represent the diverse knowledge embedded within these models
- ☐ Step1: leverage **generative distributions** of source LLMs to externalize individual knowledge
- ☐ Step2: fuse the distributions and transfer to the target LLM through lightweight training



□Key Factors

- ☐ Fusion Function: opt for distributions with minimal ppl or weighted average based on ppl
- □ Token Alignment: use **dynamic programming** to recursively minimize the total cost of editing one sequence of tokens to match the other



□Experimental Setup

- ☐ Source LLMs: Llama-2 7B, OpenLLaMA 7B, MPT 7B
- ☐ Training Corpus: MiniPile (1M Documents, <2B Tokens, 22 Domains)
- ☐ Evaluation Details
 - ☐ Multiple-Choice Tasks: Big-Bench Hard, ARC-easy, ARC-challenge, BoolQ, HellaSwag, OBQA
 - ☐ Generation Tasks: MultiPL-E, TrivialQA, DROP, LAMBADA, IWSLT2017, SciBench
- ☐ Baselines
 - ☐ Original LLMs: Llama-2 7B, OpenLLaMA 7B, MPT 7B
 - ☐ Continual Trained LLMs: Llama-2 CLM (Casual Language Modeling)

□Main Results

☐ Multiple Choice Tasks

Model	ввн	ARC-easy	ARC-challenge	BoolQ	HellaSwag	OpenBookQA
OpenLLaMA-7B	33.87	69.70	41.38	72.29	74.53	41.00
MPT-7B	33.38	70.12	42.15	74.74	76.25	42.40
Llama-2-7B	39.70	74.58	46.33	77.71	76.00	44.20
Llama-2-CLM-7B	40.44	74.54	46.50	76.88	76.57	44.80
SusellM-7B	41.75	75.04	47.44	78.13	76.78	45.40

☐ Generation Tasks

Model	MultiPL-E	TrivialQA	DROP	LAMBADA	IWSLT2017	SciBench
OpenLLaMA-7B	18.11	39.96	22.31	70.31	5.51	0.68
MPT-7B	17.26	28.89	23.54	70.08	5.49	0.88
Llama-2-7B	14.63	52.46	27.25	73.28	6.48	0.14
Llama-2-CLM-7B	14.83	53.14	28.51	73.45	6.91	0.94
FuseLLM-7B	15.56	54.49	28.97	73.72	6.75	1.65

FuseLLM-7B outperforms each source LLM and the continual training baseline in almost all tasks. The target LLM's performance on the test domain and the construction of training data are crucial

□Detailed Results

General Reasoning & Commonsense Reasoning

We first show the performance of FuseLLM on Big-Bench Hard and CommonSense benchmarks, which evaluate the general reasoning and commonsense reasoning abilities respectively.

Task	OpenLLaMA	MPT	Llama-2	Llama-2 CLM	FUSELLM
Boolean Expressions	74.40	66.00	68.80	76.00 (+10.47%)	71.60 (+4.07%)
Causal Judgement	45.45	50.80	50.80	46.52 (-8.43%)	46.52 (-8.43%)
Date Understanding	43.60	43.60	59.60	59.20 (-0.67%)	62.40 (+4.70%)
Disambiguation QA	36.00	47.60	46.80	48.00 (+2.56%)	50.00 (+6.84%)
Dyck Languages	5.20	5.20	7.20	6.40 (-11.11%)	8.80 (+22.22%)
Formal Fallacies	50.80	52.80	49.20	48.80 (-0.81%)	49.20 (+0.00%)
Geometric Shapes	0.00	0.00	34.40	19.20 (-44.17%)	22.80 (-33.72%)
Hyperbaton	62.80	53.60	54.40	56.40 (+3.68%)	65.20 (+19.85%)
Logical Deduction (3 objects)	43.60	40.80	54.00	57.20 (+5.93%)	60.40 (+11.85%)
Logical Deduction (5 objects)	24.80	31.60	31.20	35.60 (+14.10%)	33.20 (+6.41%)
Logical Deduction (7 objects)	16.80	18.40	24.80	29.60 (+19.35%)	25.60 (+3.23%)
Movie Recommendation	39.60	52.00	72.80	71.60 (-1.65%)	73.60 (+1.10%)
Multistep Arithmetic Two	0.80	0.40	0.80	4.40 (+450.00%)	4.80 (+500.00%)
Navigate	54.00	48.80	56.00	61.20 (+9.29%)	64.40 (+15.00%)
Object Counting	49.60	40.40	49.60	51.60 (+4.03%)	55.20 (+11.29%)
Penguins in a Table	28.08	28.08	32.19	31.51 (-2.11%)	32.88 (+2.14%)
Reasoning about Colored Objects	28.00	31.60	46.40	47.20 (+1.72%)	48.40 (+4.31%)
Ruin Names	31.20	23.20	34.00	30.80 (-9.41%)	32.40 (-4.71%)
Salient Translation Error Detection	14.80	0.00	24.80	27.60 (+11.29%)	29.20 (+17.74%)
Snarks	44.94	45.51	47.75	49.44 (+3.54%)	49.44 (+3.54%)
Sports Understanding	64.40	82.40	90.00	90.00 (+0.00%)	91.20 (+1.33%)
Temporal Sequences	32.00	21.20	12.80	16.40 (+28.13%)	16.40 (+28.13%)
Tracking Shuffled Objects (3 objects)	36.40	30.40	33.20	33.20 (+3.61%)	34.40 (+3.61%)
Tracking Shuffled Objects (5 objects)	19.20	14.40	15.60	15.20 (-2.56%)	15.60 (+0.00%)
Tracking Shuffled Objects (7 objects)	10.80	2.00	11.20	9.60 (-14.29%)	10.40 (-7.14%)
Web of Lies	51.60	63.60	50.80	61.60 (+21.26%)	65.60 (+29.13%)
Word Sorting	5.60	6.80	12.80	7.60 (-40.63%)	7.60 (-40.63%)
Avg. 27 Tasks	33.87	33.38	39.70	40.44 (+1.86%)	41.75 (+5.16%)

Table 1: Overall results of FUSELLM and baselines in reasoning evaluations on Big-Bench Hard (BBH), where percentages indicate the rate of improvement/decrease compared to Llama-2.

Task	OpenLLaMA	MPT	Llama-2	Llama-2 CLM	FUSELLM
ARC-easy	69.70	70.12	74.58	74.54 (-0.05%)	75.04 (+0.62%)
ARC-challenge	41.38	42.15	46.33	46.50 (+0.37%)	47.44 (+2.40%)
BoolQ	72.29	74.74	77.71	76.88 (-1.07%)	78.13 (+0.54%)
HellaSwag	74.53	76.25	76.00	76.57 (+0.75%)	76.78 (+1.03%)
OpenBookQA	41.00	42.40	44.20	44.80 (+1.36%)	45.40 (+2.71%)
Avg. 5 Tasks	59.78	61.13	63.76	63.86 (+0.16%)	64.56 (+1.25%)

Table 2: Overall results of FUSELLM and baselines in commonsense evaluations on CommenSense (CS), where percentages indicate the rate of improvement/decrease compared to Llama-2.

Code Generation & Text Generation

We then evaluate FuseLLM on MultiPL-E, which is a multilingual programming benchmark to assess the code generation performance. We also conduct experiments on several text generation benchmarks, including TrivialQA (question-answering), DROP (reading comprehension), LAMBADA (content analysis), IWSLT2017 (machine translation), and SCIBench (theorem application).

Task	OpenLLaMA	MPT	Llama-2	Llama-2 CLM	FUSELLM
C++	14.47	13.11	7.45	9.88 (+32.62%)	9.25 (+24.16%)
Go	68.20	66.96	57.02	54.44 (-4.52%)	59.78 (+4.84%)
Java	14.28	13.42	10.31	10.50 (+1.84%)	10.34 (+0.29%)
JavaScript	17.61	13.01	13.17	14.25 (+8.20%)	14.32 (+8.73%)
PHP	11.24	9.53	9.75	9.04 (-7.28%)	9.41 (-3.49%)
Python	15.96	17.24	13.85	13.07 (-5.63%)	13.91 (+0.43%)
R	7.52	4.53	4.97	5.25 (+5.63%)	5.84 (+17.51%)
Ruby	10.34	12.33	10.37	10.68 (+2.99%)	11.24 (+8.39%)
Rust	6.18	8.29	6.77	6.96 (+2.81%)	7.05 (+4.14%)
TypeScript	15.31	14.13	12.61	14.19 (+12.53%)	14.50 (+14.99%)
Avg. 10 Tasks	18.11	17.26	14.63	14.83 (+1.37%)	15.56 (+6.36%)

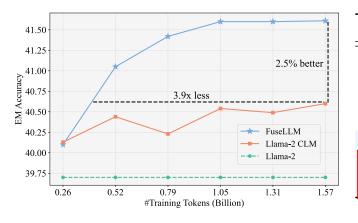
Table 3: Overall results of FUSELLM and baselines in code generation evaluations on MultiPL-E (ME), where percentages indicate the rate of improvement/decrease compared to Llama-2.

Task	OpenLLaMA	MPT	Llama-2	Llama-2 CLM	FUSELLM
TrivialQA	39.96	28.89	52.46	53.14 (+1.30%)	54.49 (+3.87%)
DROP	22.31	23.54	27.25	28.51 (+4.62%)	28.97 (+6.31%)
LAMBADA	70.31	70.08	73.28	73.45 (+0.23%)	73.72 (+0.60%)
IWSLT2017	5.51	5.49	6.48	6.91 (+6.64%)	6.75 (+4.17%)
SciBench	0.68	0.88	0.14	0.94 (+571.43%)	1.65 (+1078.57%)

Table 8: Overall results of FUSELLM and baselines in additional generative benchmarks, where percentages indicate the rate of improvement/decrease compared to Llama-2.

□ FuseLLM vs. Knowledge Distillation

- ☐ Similarities: speed up training efficiency (less token, higher performance)
- \square Differences: fusion of 3x7B LLMs outperforms distillation from a 13B LLM



BBH	CS	ME
47.92	66.33	18.76
33.87	59.78	18.11
33.38	61.13	17.26
39.70	63.76	14.63
40.44 (+1.86%)	63.86 (+0.16%)	14.83 (+1.37%)
40.88 (+2.97%)	64.41 (+1.02%)	15.45 (+5.60%)
41.75 (+5.16%)	64.56 (+1.25%)	15.56 (+6.36%)
	47.92 33.87 33.38 39.70 40.44 (+1.86%) 40.88 (+2.97%)	47.92 66.33 33.87 59.78 33.38 61.13 39.70 63.76 40.44 (+1.86%) 63.86 (+0.16%) 40.88 (+2.97%) 64.41 (+1.02%)

□FuseLLM vs. Model Ensemble&Weight Merging

- ☐ Source LLMs: continual training Pythia-1B on different corpus (Phil, NIH, USPTO)
- ☐ Ensemble and merging methods achieve lower average ppl than the source LLMs
- ☐ FuseLLM achieves lowest average ppl

Model	Phil	NIH	USPTO	Average
Pythia	0.9008	0.6740	0.6077	0.7275
Phil	0.8397	0.6861	0.6228	0.7162
NIH	0.9248	0.6215	0.6278	0.7247
USPTO	0.9296	0.6872	0.6017	0.7395
Ensemble	0.8960	0.6647	0.6180	0.7262
Weight Merging	0.8786	0.6496	0.6054	0.7112
FuseLLM	0.8463	0.6569	0.6068	0.7034

□Number of Source LLMs

☐ Increasing number of source LLMs → Increased performance.

Model	ВВН	CS	ME
OpenLLaMA	33.87	59.78	18.11
MPT	33.38	61.13	17.26
Llama-2	39.70	63.76	14.63
Llama-2 CLM	40.44 (+1.86%)	63.86 (+0.16%)	14.83 (+1.37%)
Llama-2 + OpenLLaMA	41.00 (+3.27%)	64.50 (+1.16%)	15.51 (+6.02%)
Llama-2 + MPT	41.16 (+3.68%)	64.51 (+1.18%)	15.47 (+5.74%)
FuseLLM	41.75 (+5.16%)	64.56 (+1.25%)	15.56 (+6.36%)

□Alignment Criteria & Fusion Function

- \square Strict criteria (EM) ×; More information (MinED) $\sqrt{}$
- ☐ Fusion Func: different is more or accurate is more?

Choice	ВВН	ME	CS				
	Alignment Criteria						
EM	41.57	15.49	64.24				
MinED	41.75 (+0.43%)	15.56 (+0.45%)	64.56 (+0.50%)				
	Fusion Function						
AvgCE	41.04	15.39	63.98				
MinCE	41.75 (+1.73%)	15.56 (+1.10%)	64.56 (+0.91%)				

Conclusion

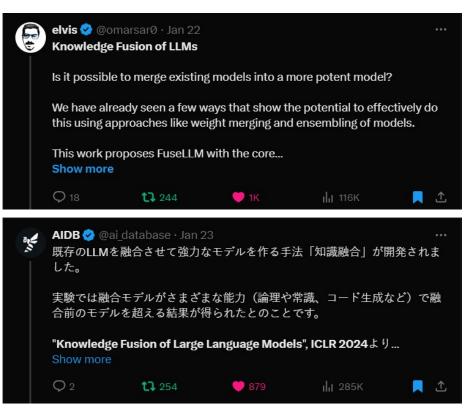
- ☐ Training LLMs from scratch incurs substantial costs and may lead to potential redundancy in competencies of LLMs
- ☐ We introduce the notion of knowledge fusion for LLMs, aimed at combining the capabilities of existing LLMs and transferring them into a potent LLM
- □ Compared to model ensemble and merging techniques, the field of LLMs fusion appears to be a more promising avenue, especially in light of the diverse structures and scales of LLMs

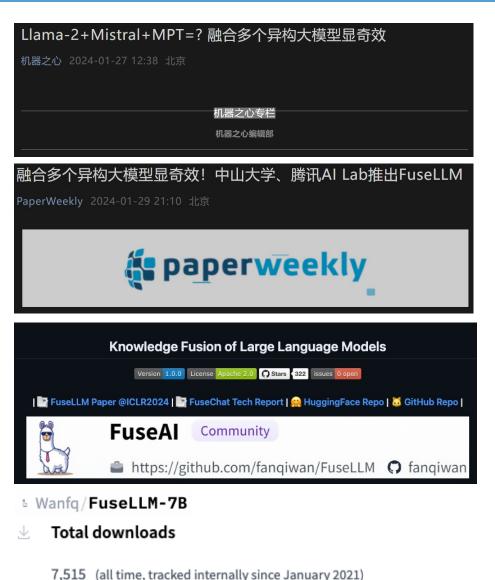
Published as a conference paper at ICLR 2024

KNOWLEDGE FUSION OF LARGE LANGUAGE MODELS

Fanqi Wan¹*, Xinting Huang²†, Deng Cai², Xiaojun Quan^{1†}, Wei Bi², Shuming Shi² ¹School of Computer Science and Engineering, Sun Yat-sen University, China ²Tencent AI Lab

wanfq@mail2.sysu.edu.cn, quanxj3@mail.sysu.edu.cn
{timxthuang, jcykcai, victoriabi, shumingshi}@tencent.com





1,020 (all time, tracked internatly since same

Thank you!

