

Analyzing and Improving Optimal-Transport-based Adversarial Networks

Jaemoo Choi*, Jaewoong Choi*, Myungjoo Kang

Overview

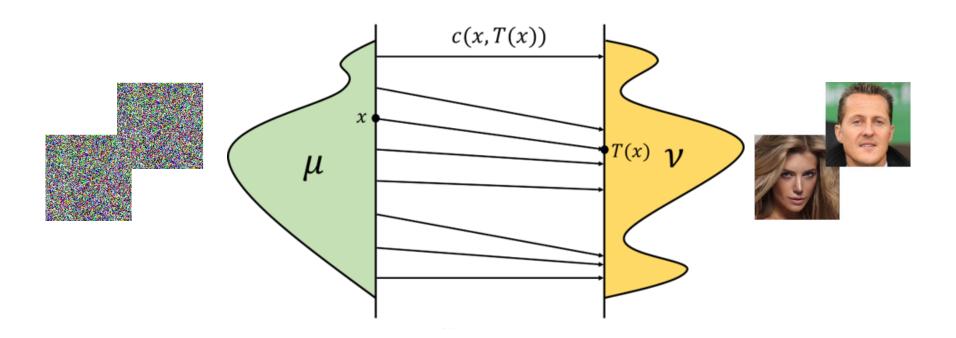
Unify various adversarial algorithms through Unbalanced Optimal Transport Model (UOTM)

Compare and analyze properties of adversarial algorithms through the unified perspective

Improve adversarial algorithms based on our analysis

Notations

- Throughout the presentation, μ and ν is source (prior) and target (data) distribution, respectively.
- c is a quadratic (transport) cost functional, i.e. $c(x,y) = \tau \| x y \|^2$.



Preliminaries

UOT problem relaxes the hard constraint on marginal distributions into soft penalization.

OT:
$$C(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \left[\int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y) \right].$$
 Hard Constraint

 $T_{\#}\mu = \nu$ OTM $T(x) \nu$ $T_{\#}\tilde{\mu} = \tilde{\nu}$ UOTM

Preliminaries

Let $g_i(x) = -\Psi_i^*(-x)$ for simplicity. Note that $c(x, y) = \tau ||x - y||^2$.

Primal:
$$\inf_{\pi \in \mathcal{M}_+(\mathcal{X} \times \mathcal{Y})} \left[\int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y) + D_{\Psi_1}(\pi_0|\mu) + D_{\Psi_2}(\pi_1|\nu) \right]$$

Semi-dual:
$$\sup_{v_{\phi}} \left[\int_{\mathcal{X}} g_1 \left(\inf_{T_{\theta}} [c\left(x, T_{\theta}(x)\right) - v_{\phi}\left(T_{\theta}\right)] \right) d\mu(x) + \int_{\mathcal{Y}} g_2(v_{\phi}(y)) d\nu(y) \right]$$

Unified View of OT-based Adversarial Networks

• Let $g_i(x) = -\Psi_i^*(-x)$ for simplicity.

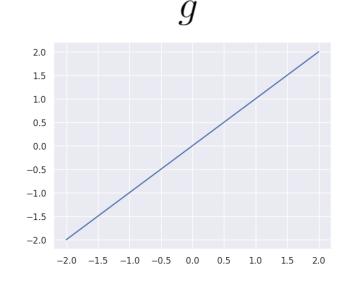
Primal:
$$\inf_{\pi \in \mathcal{M}_+(\mathcal{X} \times \mathcal{Y})} \left[\int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y) + D_{\Psi_1}(\pi_0|\mu) + D_{\Psi_2}(\pi_1|\nu) \right]$$

$$\text{Semi-dual:} \quad \sup_{v_{\phi}} \left[\int_{\mathcal{X}} g_{1} \left(\inf_{T_{\theta}} [c\left(x, T_{\theta}(x)\right) - v_{\phi}\left(T_{\theta}\right)] \right) d\mu(x) + \int_{\mathcal{Y}} g_{2}(v_{\phi}(y)) d\nu(y) \right]$$

$$D_{\Psi}$$

$$D_{\Psi}(P|Q) = \begin{cases} 0, & \text{if } P = Q \ a.e. \\ \infty, & \text{else} \end{cases}$$

Convex Indicator



Unified View of OT-based Adversarial Networks

• Let $g_i(x) = -\Psi_i^*(-x)$ for simplicity.

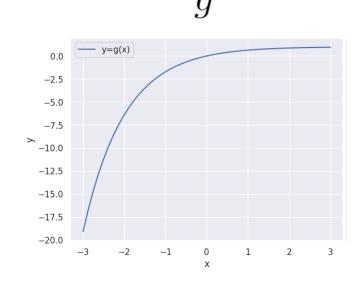
Primal:
$$\inf_{\pi \in \mathcal{M}_+(\mathcal{X} \times \mathcal{Y})} \left[\int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y) + D_{\Psi_1}(\pi_0|\mu) + D_{\Psi_2}(\pi_1|\nu) \right]$$

$$\text{Semi-dual:} \quad \sup_{v_{\phi}} \left[\int_{\mathcal{X}} g_{1} \left(\inf_{T_{\theta}} [c\left(x, T_{\theta}(x)\right) - v_{\phi}\left(T_{\theta}\right)] \right) d\mu(x) + \int_{\mathcal{Y}} g_{2}(v_{\phi}(y)) d\nu(y) \right]$$

 D_{Ψ}

KL divergence

 χ^2 divergence



Unified View of OT-based Adversarial Networks

Let $g_i(x) = -\Psi_i^*(-x)$ for simplicity. Note that $c(x, y) = \tau ||x - y||^2$.

Primal:
$$\inf_{\pi \in \mathcal{M}_+(\mathcal{X} \times \mathcal{Y})} \left[\int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y) + D_{\Psi_1}(\pi_0|\mu) + D_{\Psi_2}(\pi_1|\nu) \right]$$

Semi-dual:
$$\sup_{v_{\phi}} \left[\int_{\mathcal{X}} g_{1} \left(\inf_{T_{\theta}} [c\left(x, T_{\theta}(x)\right) - v_{\phi}\left(T_{\theta}\right)] \right) d\mu(x) + \int_{\mathcal{Y}} g_{2}(v_{\phi}(y)) d\nu(y) \right]$$

$$g_1 = g_2 = \operatorname{Id} \qquad g_1 = \operatorname{Id}, g_2 = \operatorname{Ccv} \qquad g_1 = g_2 = \operatorname{Ccv}$$

$$c \equiv 0 \qquad \text{WGAN [3]} \qquad \text{f-GAN [4]} \qquad \text{UOTM w/o cost}$$

$$c \neq 0 \qquad \text{OTM [2]} \qquad \text{Source-fixed-UOTM} \qquad \text{UOTM [1]}$$

^[1] J. Choi, J. Choi, M. Kang. "Generative Modeling through the Semi-dual Formulation of Unbalanced Optimal Transport." NeurIPS, 2023.

^[2] L. Rout, A. Korotin, E. Burnaev. "Generative Modeling with Optimal Transport Maps", ICLR, 2022.

^[3] M. Arjovsky, S. Chintala, L. Bottou, "Wasserstein generative adversarial networks", ICML, 2017.

^[4] S. Nowozin, B. Cseke, R. Tomioka, "f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization", NeurIPS, 2016.

Properties of OT-based Adversarial Networks

Note that $c(x, y) = \tau ||x - y||^2$.

$$\sup_{v_{\phi}} \left[\int_{\mathcal{X}} g_{1} \left(\inf_{T_{\theta}} \left[c\left(x, T_{\theta}(x)\right) - v_{\phi}\left(T_{\theta}\right) \right] \right) d\mu(x) + \int_{\mathcal{Y}} g_{2}(v_{\phi}(y)) d\nu(y) \right]$$

$$g_1 = g_2 = \operatorname{Id} \qquad g_1 = \operatorname{Id}, g_2 = \operatorname{Ccv} \qquad g_1 = g_2 = \operatorname{Ccv}$$

$$c \equiv 0 \qquad \text{WGAN} \qquad \text{f-GAN} \qquad \text{UOTM w/o cost}$$

$$c \neq 0 \qquad \text{OTM} \qquad \text{Source-fixed-UOTM} \qquad \text{UOTM}$$

- The presence of cost function $c(\cdot,\cdot)$ mitigates mode collapse. [2]
- The strictly concave $g_1 \& g_2$ helps stabilizing training. [2]
- UOT-based algorithms offers more outlier robustness. [1]

Properties of OT-based Adversarial Networks

Note that $c(x, y) = \tau ||x - y||^2$.

$$\sup_{v_{\phi}} \left[\int_{\mathcal{X}} g_{1} \left(\inf_{T_{\theta}} \left[c\left(x, T_{\theta}(x)\right) - v_{\phi}\left(T_{\theta}\right) \right] \right) d\mu(x) + \int_{\mathcal{Y}} g_{2}(v_{\phi}(y)) d\nu(y) \right]$$

• For UOTM, under some regularity condition, there exists unique Lipschitz continuous optimal potential v^* . Moreover, the collection of c-convex potential of UOTM which has a negative loss satisfies equi-Lipschitzness. [2]

^[1] J. Choi, J. Choi, M. Kang. "Generative Modeling through the Semi-dual Formulation of Unbalanced Optimal Transport." *NeurIPS*, 2023.

^[2] J. Choi, J. Choi, M. Kang. "Analyzing and Improving Optimal-Transport-based Adversarial Netoworks." ICLR, 2024.

Properties of OT-based Adversarial Networks

Desirable properties of UOTMs

- Stabilize training (: concave g_1 and g_2)
- Prevent mode collapse (: cost function c)
- Robust to outliers (: soft marginal penalization)
- Lipschitzness of potentials

Limitation of UOTMs

Distributional matching error (: soft marginal penalization)

$$\inf_{\pi \in \mathcal{M}_{+}(\mathcal{X} \times \mathcal{Y})} \left[\int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y) + D_{\Psi_{1}}(\pi_{0}|\mu) + D_{\Psi_{2}}(\pi_{1}|\nu) \right]$$
Soft Penalization

Improving OT-based Adversarial Networks

We introduce new hyperparameter α_1 and α_2 . We gradually increase these hyperparameters while training.

Start training with UOTM algorithm (Small $\alpha_1 \& \alpha_2$)

Gradually increase $\alpha_1 \& \alpha_2$ for better distribution matching

$$\inf_{\pi \in \mathcal{M}_{+}} \left[\int c(x,y) d\pi(x,y) + \alpha_{1} D_{\Psi_{1}} (\pi_{0}|\mu) + \alpha_{2} D_{\Psi_{2}} (\pi_{1}|\nu) \right]$$

Thank you!