Improved sampling via learned diffusions

Lorenz Richter*. Julius Berner*

ICLR

May, 2024

Generative modeling and sampling

Task

Sample from a complex (high-dimensional, multimodal) distribution p_{target} .

Generative modeling and sampling

Task

Sample from a complex (high-dimensional, multimodal) distribution p_{target} .

 p_{target} can be given in the form of:

1. **samples** $X^{(i)} \sim p_{\text{target}}$ (images, video, audio, text, ...).

Generative modeling and sampling

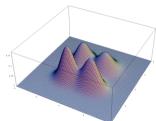
Task

Sample from a complex (high-dimensional, multimodal) distribution p_{target} .

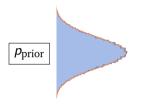
 p_{target} can be given in the form of:

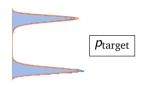
1. **samples** $X^{(i)} \sim p_{\text{target}}$ (images, video, audio, text, ...).

2. an (unnormalized) **density** $p_{\text{target}} = \rho/\mathcal{Z}$ (e.g., in Bayesian statistics, computational physics and chemistry).

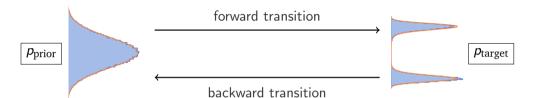


Goal: Sample from a distribution $p_{\text{target}} = \rho/\mathcal{Z}$ using an auxiliary distribution p_{prior} .





Goal: Sample from a distribution $p_{\text{target}} = \rho/\mathcal{Z}$ using an auxiliary distribution p_{prior} .



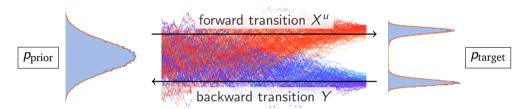
Goal: Sample from a distribution $p_{\text{target}} = \rho/\mathcal{Z}$ using an auxiliary distribution p_{prior} .



Setting: Consider controlled SDEs (with the notation $\ddot{\sigma}(t) \coloneqq \sigma(T-t)$)

$$dX_s^u = (\mu + \sigma u)(X_s^u, s) ds + \sigma(s) dW_s, \qquad X_0^u \sim p_{prior},$$

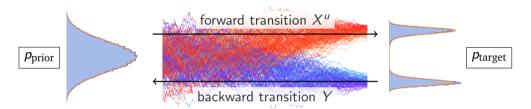
Goal: Sample from a distribution $p_{\text{target}} = \rho/\mathcal{Z}$ using an auxiliary distribution p_{prior} .



Setting: Consider controlled SDEs (with the notation $\ddot{\sigma}(t) := \sigma(T - t)$)

$$\begin{split} \mathrm{d} X^u_s &= (\mu + \sigma u)(X^u_s,s)\,\mathrm{d} s + \sigma(s)\,\mathrm{d} W_s, \qquad X^u_0 \sim p_{\mathrm{prior}}, \\ \mathrm{d} Y_s &= -\overline{\mu}(Y_s,s)\,\mathrm{d} s + \overline{\sigma}(s)\,\mathrm{d} W_s, \qquad Y_0 \sim p_{\mathrm{target}}. \end{split}$$

Goal: Sample from a distribution $p_{\text{target}} = \rho/\mathcal{Z}$ using an auxiliary distribution p_{prior} .

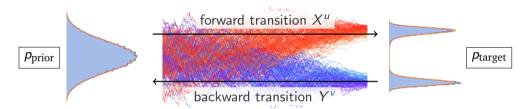


Setting: Consider controlled SDEs (with the notation $\sigma(t) := \sigma(T - t)$)

$$\mathrm{d} X^u_s = (\mu + \sigma u)(X^u_s, s)\,\mathrm{d} s + \sigma(s)\,\mathrm{d} W_s, \qquad X^u_0 \sim p_\mathrm{prior}, \ \mathrm{d} Y_s = -\bar{\mu}(Y_s, s)\,\mathrm{d} s + \bar{\sigma}(s)\,\mathrm{d} W_s, \qquad Y_0 \sim p_\mathrm{target}.$$

Idea: Learn u s.t. X^u is the time-reversal of Y, implying $X^u_T \sim p_{\text{target}}$ if $Y_T \sim p_{\text{prior}}$.

Goal: Sample from a distribution $p_{\text{target}} = \rho/\mathcal{Z}$ using an auxiliary distribution p_{prior} .



Setting: Consider controlled SDEs (with the notation $\ddot{\sigma}(t) \coloneqq \sigma(T-t)$)

$$\begin{split} \mathrm{d} X^u_s &= (\mu + \sigma u)(X^u_s, s) \, \mathrm{d} s + \sigma(s) \, \mathrm{d} W_s, \qquad X^u_0 \sim p_{\mathrm{prior}}, \\ \mathrm{d} Y^v_s &= (-\bar{\mu} + \bar{\sigma} \bar{v})(Y^v_s, s) \, \mathrm{d} s + \bar{\sigma}(s) \, \mathrm{d} W_s, \qquad Y^v_0 \sim p_{\mathrm{target}}. \end{split}$$

Idea: Learn u, v s.t. X^u is the time-reversal of Y^v , implying $X^u_T \sim p_{\text{target}}$ and $Y^v_T \sim p_{\text{prior}}$.

$$dX_s^u = (\mu + \sigma u)(X_s^u, s) ds + \sigma(s) dW_s, \qquad X_0^u \sim p_{\text{prior}},$$

$$dY_s^v = (-\bar{\mu} + \bar{\sigma}\bar{v})(Y_s^v, s) ds + \bar{\sigma}(s) dW_s, \qquad Y_0^v \sim p_{\text{target}}.$$

$$dX_s^u = (\mu + \sigma u)(X_s^u, s) ds + \sigma(s) dW_s, \qquad X_0^u \sim p_{\text{prior}}, dY_s^v = (-\bar{\mu} + \bar{\sigma}\bar{v})(Y_s^v, s) ds + \bar{\sigma}(s) dW_s, \qquad Y_0^v \sim p_{\text{target}}.$$

- Considering the **general case** ($v \neq 0$) one can:
 - take (arbitrary) informed priors,

$$dX_s^u = (\mu + \sigma u)(X_s^u, s) ds + \sigma(s) dW_s, X_0^u \sim p_{\text{prior}},$$

$$dY_s^v = (-\bar{\mu} + \bar{\sigma}\bar{v})(Y_s^v, s) ds + \bar{\sigma}(s) dW_s, Y_0^v \sim p_{\text{target}}.$$

- Considering the **general case** $(v \neq 0)$ one can:
 - take (arbitrary) informed priors,
 - remove prior errors since $Y_T \sim p_{\text{prior}}$ only holds approximately,

$$dX_s^u = (\mu + \sigma u)(X_s^u, s) ds + \sigma(s) dW_s, \qquad X_0^u \sim p_{\text{prior}},$$

$$dY_s^v = (-\bar{\mu} + \bar{\sigma}\bar{v})(Y_s^v, s) ds + \bar{\sigma}(s) dW_s, \qquad Y_0^v \sim p_{\text{target}}.$$

- Considering the **general case** $(v \neq 0)$ one can:
 - take (arbitrary) informed priors,
 - \blacksquare remove prior errors since $Y_T \sim p_{\text{prior}}$ only holds approximately,
 - \blacksquare use (arbitrary) informed coefficients σ , μ and time horizons T.

$$dX_s^u = (\mu + \sigma u)(X_s^u, s) ds + \sigma(s) dW_s, \qquad X_0^u \sim p_{\text{prior}},$$

$$dY_s^v = (-\bar{\mu} + \bar{\sigma}\bar{v})(Y_s^v, s) ds + \bar{\sigma}(s) dW_s, \qquad Y_0^v \sim p_{\text{target}}.$$

- Considering the **general case** $(v \neq 0)$ one can:
 - take (arbitrary) informed priors,
 - \blacksquare remove prior errors since $Y_T \sim p_{\text{prior}}$ only holds approximately,
 - \blacksquare use (arbitrary) informed coefficients σ , μ and time horizons T.
- When only given an **unnormalized density** ρ , we **cannot use**:
 - score matching or variants of likelihood training (no samples from p_{target}),

$$dX_s^u = (\mu + \sigma u)(X_s^u, s) ds + \sigma(s) dW_s, \qquad X_0^u \sim p_{\text{prior}},$$

$$dY_s^v = (-\bar{\mu} + \bar{\sigma}\bar{v})(Y_s^v, s) ds + \bar{\sigma}(s) dW_s, \qquad Y_0^v \sim p_{\text{target}}.$$

- Considering the **general case** $(v \neq 0)$ one can:
 - take (arbitrary) informed priors,
 - remove prior errors since $Y_T \sim p_{\text{prior}}$ only holds approximately,
 - \blacksquare use (arbitrary) informed coefficients σ , μ and time horizons T.
- When only given an **unnormalized density** ρ , we **cannot use**:
 - score matching or variants of likelihood training (no samples from p_{target}),
 - reverse KL between density of X_T^u and p_{target} as in continuous normalizing flows (probability flow ODE is only accurate at convergence).

Two controlled SDEs:

$$dX_s^u = (\mu + \sigma u)(X_s^u, s) ds + \sigma(s) dW_s, X_0^u \sim p_{\text{prior}},$$

$$dY_s^v = (-\bar{\mu} + \bar{\sigma}\bar{v})(Y_s^v, s) ds + \bar{\sigma}(s) dW_s, Y_0^v \sim p_{\text{target}}.$$

- Considering the **general case** $(v \neq 0)$ one can:
 - take (arbitrary) informed priors,
 - \blacksquare remove prior errors since $Y_T \sim p_{\text{prior}}$ only holds approximately,
 - \blacksquare use (arbitrary) informed coefficients σ , μ and time horizons T.
- When only given an **unnormalized density** ρ , we **cannot use**:
 - \blacksquare score matching or variants of likelihood training (no samples from p_{target}),
 - reverse KL between density of X_T^u and p_{target} as in continuous normalizing flows (probability flow ODE is only accurate at convergence).

Idea: Use divergences between path measures.

Sampling via learned diffusions: Path measures

■ Two controlled SDEs:

$$dX_s^u = (\mu + \sigma u)(X_s^u, s) ds + \sigma(s) dW_s, X_0^u \sim p_{\text{prior}},$$

$$dY_s^v = (-\bar{\mu} + \bar{\sigma}\bar{v})(Y_s^v, s) ds + \bar{\sigma}(s) dW_s, Y_0^v \sim p_{\text{target}}.$$

■ Path space perspective: Consider path measures \mathbb{P}_{X^u} and $\mathbb{P}_{\bar{V}^v}$ on $C([0,T],\mathbb{R}^d)$.

Sampling via learned diffusions: Path measures

$$dX_s^u = (\mu + \sigma u)(X_s^u, s) ds + \sigma(s) dW_s, X_0^u \sim p_{prior},$$

$$dY_s^v = (-\bar{\mu} + \bar{\sigma}\bar{v})(Y_s^v, s) ds + \bar{\sigma}(s) dW_s, Y_0^v \sim p_{target}.$$

- Path space perspective: Consider path measures \mathbb{P}_{X^u} and $\mathbb{P}_{\bar{Y}^v}$ on $C([0,T],\mathbb{R}^d)$.
- Identify controls u^* , v^* via **divergence** D between those measures

$$u^*, v^* \in \operatorname*{arg\,min}\limits_{u,v} D\big(\mathbb{P}_{X^u}\big|\mathbb{P}_{\bar{Y}^v}\big).$$

Sampling via learned diffusions: Path measures

Two controlled SDEs:

$$dX_s^u = (\mu + \sigma u)(X_s^u, s) ds + \sigma(s) dW_s, X_0^u \sim p_{prior}, dY_s^v = (-\bar{\mu} + \bar{\sigma}\bar{v})(Y_s^v, s) ds + \bar{\sigma}(s) dW_s, Y_0^v \sim p_{target}.$$

- Path space perspective: Consider path measures \mathbb{P}_{X^u} and $\mathbb{P}_{\bar{V}^v}$ on $C([0,T],\mathbb{R}^d)$.
- Identify controls u^* , v^* via **divergence** D between those measures

$$u^*, v^* \in \operatorname*{arg\,min}\limits_{u,v} D\big(\mathbb{P}_{X^u} \big| \mathbb{P}_{\bar{Y}^v}\big).$$

Proposition (Log-likelihood for path measures)

$$\log \frac{d\mathbb{P}_{X^u}}{d\mathbb{P}_{\bar{Y}^v}}(X^w) = \int_0^T \left((u+v) \cdot \left(w + \frac{v-u}{2} \right) + \nabla \cdot (\sigma v - \mu) \right) (X_s^w, s) \, \mathrm{d}s$$
$$+ \int_0^T (u+v)(X_s^w, s) \cdot \mathrm{d}W_s + \log \frac{p_{\mathrm{prior}}(X_0^w)}{p_{\mathrm{target}}(X_T^w)}$$

■ Note that solutions $u^*, v^* \in \arg\min_{u,v} D(\mathbb{P}_{X^u} | \mathbb{P}_{\bar{Y}^v})$ are **not unique**.

- Note that solutions $u^*, v^* \in \arg\min_{u,v} D(\mathbb{P}_{X^u}|\mathbb{P}_{\bar{Y}^v})$ are **not unique**.
- We can make them unique by, e.g.,

- Note that solutions $u^*, v^* \in \arg\min_{u,v} D(\mathbb{P}_{X^u} | \mathbb{P}_{\bar{Y}^v})$ are **not unique**.
- We can make them unique by, e.g.,
 - fixing the control v = 0 (DIS),

- Note that solutions $u^*, v^* \in \arg\min_{u,v} D(\mathbb{P}_{X^u}|\mathbb{P}_{\bar{V}^v})$ are **not unique**.
- We can make them unique by, e.g.,
 - fixing the control v = 0 (DIS),
 - using time-reversals of suitable reference processes (PIS, DDS),

- Note that solutions $u^*, v^* \in \arg\min_{u,v} D(\mathbb{P}_{X^u} | \mathbb{P}_{\bar{V}^v})$ are **not unique**.
- We can make them unique by, e.g.,
 - fixing the control v = 0 (DIS),
 - using time-reversals of suitable reference processes (PIS, DDS),
 - Schrödinger bridge: Adding regularizer, e.g., $D_{\mathsf{KL}}(\mathbb{P}_{X^u}|\mathbb{P}_{X^0}) = \mathbb{E}\left[\frac{1}{2}\int_0^T \|u(X^u_s,s)\|^2\,\mathrm{d}s\right].$

- Note that solutions $u^*, v^* \in \arg\min_{u,v} D(\mathbb{P}_{X^u}|\mathbb{P}_{\bar{V}^v})$ are **not unique**.
- We can make them unique by, e.g.,
 - fixing the control v = 0 (DIS),
 - using time-reversals of suitable reference processes (PIS, DDS),
 - Schrödinger bridge: Adding regularizer, e.g., $D_{\mathsf{KL}}(\mathbb{P}_{X^u}|\mathbb{P}_{X^0}) = \mathbb{E}\left[\frac{1}{2}\int_0^T \|u(X^u_s,s)\|^2\,\mathrm{d}s\right]$.
- Popular choice for divergence *D*:

$$D_{\mathsf{KL}}(\mathbb{P}_{X^u}|\mathbb{P}_{\tilde{Y}^v}) = \mathbb{E}\left[\log rac{\mathrm{d}\mathbb{P}_{X^u}}{\mathrm{d}\mathbb{P}_{\tilde{Y}^v}}(X^u)
ight].$$

- Note that solutions $u^*, v^* \in \arg\min_{u,v} D(\mathbb{P}_{X^u}|\mathbb{P}_{\bar{V}^v})$ are **not unique**.
- We can make them unique by, e.g.,
 - fixing the control v = 0 (DIS),
 - using time-reversals of suitable reference processes (PIS, DDS),
 - Schrödinger bridge: Adding regularizer, e.g., $D_{\mathsf{KL}}(\mathbb{P}_{X^u}|\mathbb{P}_{X^0}) = \mathbb{E}\left[\frac{1}{2}\int_0^T \|u(X^u_s,s)\|^2\,\mathrm{d}s\right]$.
- Popular choice for divergence *D*:

$$D_{\mathsf{KL}}(\mathbb{P}_{X^u}|\mathbb{P}_{\tilde{Y}^v}) = \mathbb{E}\left[\log rac{\mathrm{d}\mathbb{P}_{X^u}}{\mathrm{d}\mathbb{P}_{\tilde{Y}^v}}(X^u)
ight].$$

■ Problems:

 \blacksquare Requires to simulate X^u and differentiate through the SDE solver (on-policy).

- Note that solutions $u^*, v^* \in \arg\min_{u,v} D(\mathbb{P}_{X^u}|\mathbb{P}_{\bar{V}^v})$ are **not unique**.
- We can make them unique by, e.g.,
 - fixing the control v = 0 (DIS),
 - using time-reversals of suitable reference processes (PIS, DDS),
 - Schrödinger bridge: Adding regularizer, e.g., $D_{\mathsf{KL}}(\mathbb{P}_{X^u}|\mathbb{P}_{X^0}) = \mathbb{E}\left[\frac{1}{2}\int_0^T \|u(X^u_s,s)\|^2\,\mathrm{d}s\right]$.
- Popular choice for divergence D:

$$D_{\mathsf{KL}}(\mathbb{P}_{X^u}|\mathbb{P}_{\tilde{Y}^v}) = \mathbb{E}\left[\log rac{\mathrm{d}\mathbb{P}_{X^u}}{\mathrm{d}\mathbb{P}_{\tilde{Y}^v}}(X^u)
ight].$$

■ Problems:

- \blacksquare Requires to simulate X^u and differentiate through the SDE solver (on-policy).
- Known to suffer from mode collapse.

■ We propose a novel divergence:

■ We propose a novel divergence:

Definition (Log-variance divergence)

$$D^w_{\mathrm{IV}}(\mathbb{P}_{X^u},\mathbb{P}_{ar{Y}^v}) \coloneqq \mathsf{Var}\left(\log rac{\mathrm{d}\mathbb{P}_{X^u}}{\mathrm{d}\mathbb{P}_{ar{Y}^v}}(X^w)
ight)$$

■ We propose a novel divergence:

Definition (Log-variance divergence)

$$D^w_{\mathrm{LV}}(\mathbb{P}_{X^u},\mathbb{P}_{ar{Y}^v}) \coloneqq \mathsf{Var}\left(\log rac{\mathrm{d}\mathbb{P}_{X^u}}{\mathrm{d}\mathbb{P}_{ar{Y}^v}}(X^w)
ight)$$

■ **Off-policy:** In principle arbitrary choice for *w* allows to balance exploration and exploitation.

■ We propose a novel divergence:

Definition (Log-variance divergence)

$$D^{w}_{\mathrm{LV}}(\mathbb{P}_{X^{u}},\mathbb{P}_{ar{Y}^{v}}) \coloneqq \mathsf{Var}\left(\log rac{\mathrm{d}\mathbb{P}_{X^{u}}}{\mathrm{d}\mathbb{P}_{ar{Y}^{v}}}(X^{w})
ight)$$

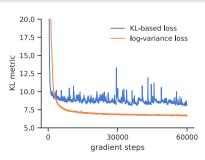
- **Off-policy:** In principle arbitrary choice for *w* allows to balance exploration and exploitation.
- **Zero-th order:** more efficient since no differentiation through the SDE solver and no gradients of p_{target} are necessary.

■ We propose a novel divergence:

Definition (Log-variance divergence)

$$\mathit{D}^{\mathsf{w}}_{\mathsf{IV}}(\mathbb{P}_{X^{\mathsf{u}}}, \mathbb{P}_{\bar{Y}^{\mathsf{v}}}) \coloneqq \mathsf{Var}\left(\mathsf{log}\,\frac{\mathrm{d}\mathbb{P}_{X^{\mathsf{u}}}}{\mathrm{d}\mathbb{P}_{\bar{Y}^{\mathsf{v}}}}(X^{\mathsf{w}})\right)$$

- **Off-policy:** In principle arbitrary choice for *w* allows to balance exploration and exploitation.
- **Zero-th order:** more efficient since no differentiation through the SDE solver and no gradients of *p*_{target} are necessary.
- **Sticking-the-landing:** Variance reduction due to control variate property.



7 / 11

Gaussian mixture

Better mode coverage: Improved performance with D_{LV} (compared against D_{KL}) for PIS, DIS, DDS, and the general bridge sampler.

Gaussian mixture

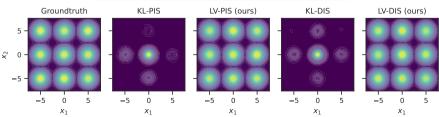
Better mode coverage: Improved performance with D_{LV} (compared against D_{KL}) for PIS, DIS, DDS, and the general bridge sampler.

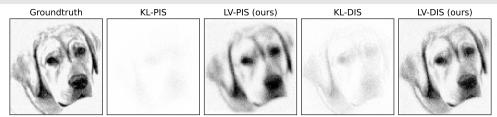
Method	Divergence	$\Delta \log \mathcal{Z}(rw) \downarrow$	$\mathcal{W}^2_\gamma\downarrow$	ESS ↑	Δ std \downarrow
CRAFT		0.012	0.020	-	0.019
PIS	KL	0.249	0.467	0.0051	1.937
	LV	<u>0.001</u>	0.020	0.9093	0.023
DIS	KL	0.015	0.064	0.0226	2.522
	LV	0.017	0.020	0.8660	0.004
DDS	KL	0.005	0.042	0.0737	2.161
	LV	0.001	0.020	0.8929	0.006
Bridge	KL	0.560	0.393	0.0180	0.698
	LV	0.100	<u>0.020</u>	<u>0.9669</u>	0.010

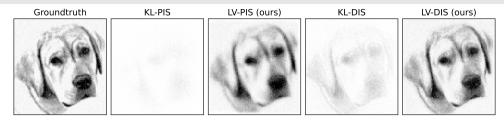
Gaussian mixture

Better mode coverage: Improved performance with D_{LV} (compared against D_{KL}) for PIS, DIS, DDS, and the general bridge sampler.

Method	Divergence	$\Delta \log \mathcal{Z}(rw) \downarrow$	$\mathcal{W}^2_\gamma\downarrow$	ESS ↑	Δ std \downarrow
CRAFT		0.012	0.020	-	0.019
PIS	KL	0.249	0.467	0.0051	1.937
	LV	0.001	0.020	0.9093	0.023
DIS	KL	0.015	0.064	0.0226	2.522
	LV	0.017	0.020	0.8660	0.004
DDS	KL	0.005	0.042	0.0737	2.161
	LV	0.001	0.020	0.8929	0.006
Bridge	KL	0.560	0.393	0.0180	0.698
	LV	0.100	<u>0.020</u>	<u>0.9669</u>	0.010

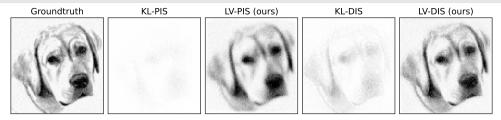






Funnel distribution (challenging benchmark for sampling methods):

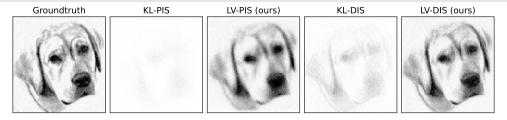
$$p_{\text{target}}(x) = \mathcal{N}(x_1; 0, 9) \prod_{i=2}^{10} \mathcal{N}(x_i; 0, e^{x_1})$$



Funnel distribution (challenging benchmark for sampling methods):

$$p_{\text{target}}(x) = \mathcal{N}(x_1; 0, 9) \prod_{i=2}^{10} \mathcal{N}(x_i; 0, e^{x_1})$$

Method	Divergence	$\Delta \log \mathcal{Z}(\mathit{rw}) \downarrow$	$\mathcal{W}_{\gamma}^{2}\downarrow$	ESS ↑	Δ std \downarrow
CRAFT		0.123	5.517	-	6.139
PIS	KL	0.111	5.639	0.1333	6.921
	LV	0.097	5.593	0.0746	6.852
DIS	KL	0.032	5.120	0.1383	5.254
	LV	0.028	<u>5.075</u>	0.2313	5.224
DDS	KL	0.045	5.305	0.1446	6.133
	LV	0.043	5.305	0.1999	6.123



Funnel distribution (challenging benchmark for sampling methods):

$$p_{\text{target}}(x) = \mathcal{N}(x_1; 0, 9) \prod_{i=2}^{10} \mathcal{N}(x_i; 0, e^{x_1})$$

Method	Divergence	$\Delta \log \mathcal{Z}(\mathit{rw}) \downarrow$	$\mathcal{W}_{\gamma}^{2}\downarrow$	ESS ↑	Δ std \downarrow
CRAFT		0.123	5.517	-	6.139
PIS	KL	0.111	5.639	0.1333	6.921
	LV	0.097	5.593	0.0746	6.852
DIS	KL	0.032	5.120	0.1383	5.254
	LV	0.028	<u>5.075</u>	0.2313	5.224
DDS	KL	0.045	5.305	0.1446	6.133
	LV	0.043	5.305	0.1999	6.123

Our improved samplers based on diffusion processes are competitive with state-of-the-art methods based on SMC & normalizing flows (CRAFT).

Many-Well problem

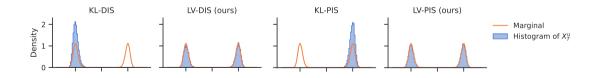
Many-Well: typical problem in molecular dynamics with

$$\log \rho(x) = -\sum_{i=1}^{w} (x_i^2 - \delta)^2 - \frac{1}{2} \sum_{i=w+1}^{d} x_i^2.$$

Many-Well problem

Many-Well: typical problem in molecular dynamics with

$$\log \rho(x) = -\sum_{i=1}^{w} (x_i^2 - \delta)^2 - \frac{1}{2} \sum_{i=w+1}^{d} x_i^2.$$

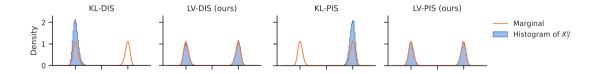


Many-Well problem

Many-Well: typical problem in molecular dynamics with

$$\log \rho(x) = -\sum_{i=1}^{w} (x_i^2 - \delta)^2 - \frac{1}{2} \sum_{i=w+1}^{d} x_i^2.$$

Problem	Method	$\Delta \log Z \downarrow$	$W_{\gamma}^2 \downarrow$	ESS ↑	$\Deltastd\downarrow$
Many-Well	PIS-KL	3.567	1.699	0.0004	1.409
$(d=5,w=5,\delta=4)$	PIS-LV	0.214	0.121	0.6744	0.001
	DIS-KL	1.462	1.175	0.0012	0.431
	DIS-LV	0.375	0.120	0.4519	0.001
Many-Well	PIS-KL	0.101	6.821	0.8172	0.001
$(d = 50, w = 5, \delta = 2)$	PIS-LV	0.087	6.823	<u>0.8453</u>	0.000
	DIS-KL	1.785	6.854	0.0225	0.009
	DIS-LV	1.783	6.855	0.0227	0.009



Thank you for your attention!

Github: https://github.com/juliusberner/sde_sampler

Mail: richter@zib.de, mail@jberner.info

References:

- J. Berner, L. Richter, K. Ullrich. *An optimal control perspective on diffusion-based generative modeling*. TMLR, 2024.
- L. Richter., J. Berner. Improved sampling via learned diffusions. ICLR, 2024.