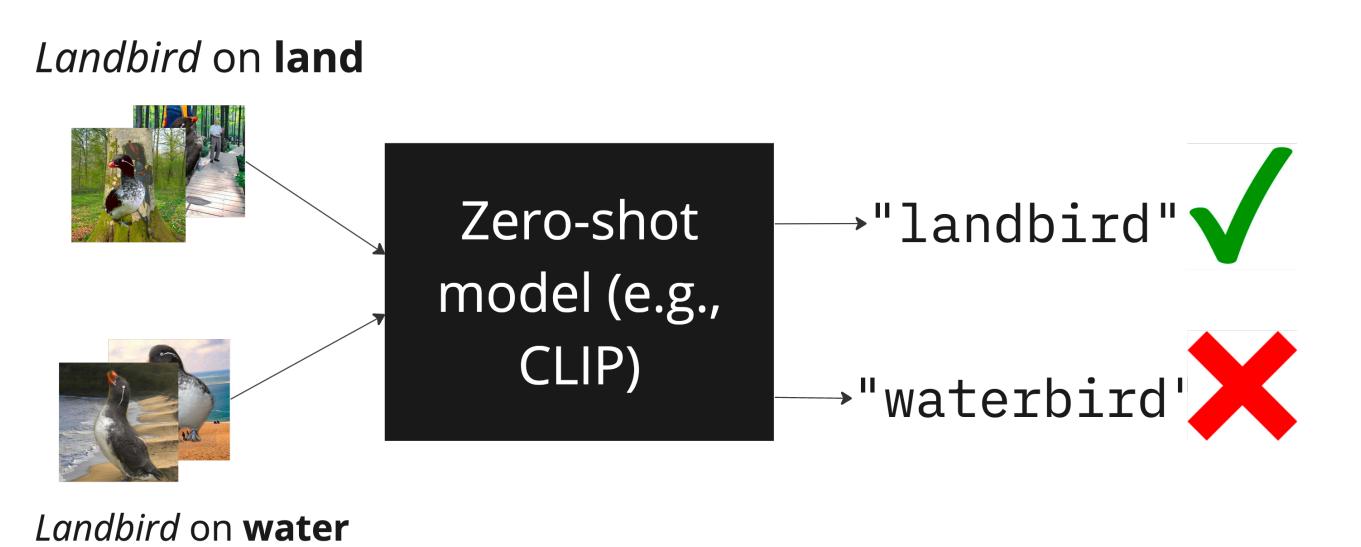


Zero-Shot Robustification of Zero-Shot Models

Dyah Adila*, Changho Shin*, Linrong Cai, Frederic Sala

University of Wisconsin-Madison


{adila,cshin23,lcai54,fredsala}@wisc.edu

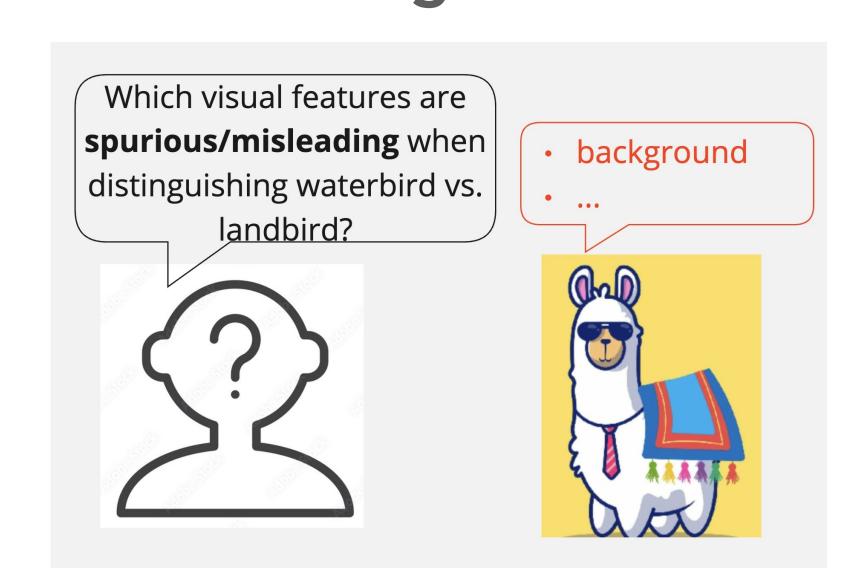
Paper 🚹

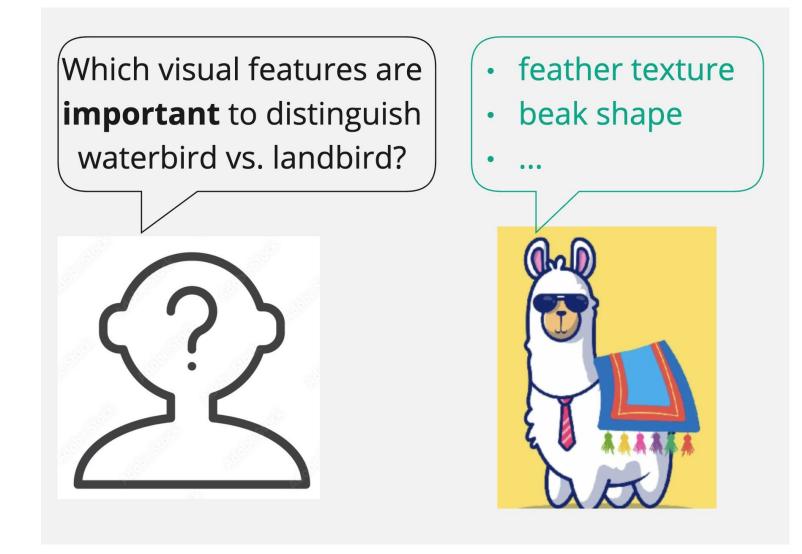
Can we make foundation models more robust?

Yes, with fine-tuning using group-annotated data (e.g. [1])

Well, can we do it for free?

- No fine-tuning
- No data


RoboShot: Zero-Shot Robustification of Zero-Shot Models


Model input embeddings as mixture of: harmful, helpful, and benign components

$$x=\sum_{s=1}^{S}lpha_s^{
m harmful}z_s+\sum_{r=S+1}^{S+R}lpha_r^{
m helpful}z_r+\sum_{b=S+R+1}^{S+R+B}lpha_b^{
m benign}z_b.$$
 reduce $lacksquare$

Procedure

1. Get insights from LLMs

Harmful insights

Helpful insights

2. Modify embeddings

Apply embedding debiasing methods [2, 3]

Neutralize harmful components

$$\hat{x} \leftarrow x - \frac{\langle x, v^{\text{harmful}} \rangle}{\langle v^{\text{harmful}}, v^{\text{harmful}} \rangle} v^{\text{harmful}}$$

Amplify helpful components

$$\hat{x} \leftarrow \hat{x} + \frac{\langle \hat{x}, v^{\text{helpful}} \rangle}{\langle v^{\text{helpful}}, v^{\text{helpful}} \rangle} v^{\text{helpful}}$$

Theoretical Results

- When insights are more precise in specifying non helpful terms, RoboShot yields better outcome.
- RoboShot is more effective when insight embedding is less noisy.

Experimental Results

Improving multimodal models

Dataset	Model		ZS		GroupPrompt ZS			RовоЅнот		
	1,1000	AVG	WG(↑)	Gap(↓)	AVG	WG(↑)	Gap(↓)	AVG	WG(↑)	Gap(↓)
	CLIP (ViT-B-32)	80.7	27.9	52.8	81.6	<u>43.5</u>	<u>38.1</u>	82.0	54.4	28.6
Waterbirds	CLIP (ViT-L-14)	88.7	<u>27.3</u>	61.4	70.7	10.4	<u>60.3</u>	79.9	45.2	34.7
	ALIGN	72.0	50.3	<u>21.7</u>	72.5	5.8	66.7	50.9	<u>41.0</u>	9.9
	AltCLIP	90.1	<u>35.8</u>	54.3	82.4	29.4	<u>53.0</u>	78.5	54.8	23.7
	CLIP (ViT-B-32)	80.1	72.7	7.4	80.4	74.9	<u>5.5</u>	84.8	80.5	4.3
CelebA	CLIP (ViT-L-14)	80.6	<u>74.3</u>	<u>6.3</u>	77.9	68.9	9.0	85.5	82.6	2.9
	ALIGN	81.8	<u>77.2</u>	<u>4.6</u>	78.3	67.4	10.9	86.3	83.4	2.9
	AltCLIP	82.3	79.7	2.6	82.3	<u>79.0</u>	3.3	86.0	77.2	8.8
			\							

Finding: Worst group accuracy (WG) improves significantly, often improving average accuracy (AVG) as well!

Finetuning version extension: Label Free Adaptation (LFA)

AVG WG WG WG WG	LFA (100 val)	A	SHOT	Rово	Dataset	
Waterbirds 82.0 54.5 83.8 \pm 0.74 55.2 \pm 0.75 84.2 \pm 1.1 53.6 \pm	AVG WG	WG	AVG	WG	AVG	
Waterbrids $02.0 \underline{5+.5} 03.0 \pm 0.74 33.2 \pm 0.75 04.2 \pm 1.1 33.0 \pm 0.75 04.2 \pm 0.75 04.2$	0.2 ± 1.1 53.6 ± 1.76	55.2 ± 0.75	83.8 \pm 0.74	<u>54.5</u>	82.0	Waterbirds
CelebA 84.8 80.5 86.7 ± 0.811 83.4 ± 1.02 86.5 ± 0.72 83.8	5 ± 0.72 83.8 ± 1.17	83.4 ± 1.02	86.7 ± 0.811	80.5	84.8	CelebA

Finding: Finetuning version of RoboShot can give further improvement!

Future Work

- 1. Improve ways to get insights: with ICL, RAG
- 2. Improve ways to use the insights: prompting, embedding edit, guided decoding, etc, ...

Reference

- [1] Zhang, M., & Ré, C. "Contrastive adapters for foundation model group robustness." NeurIPS'22
- [2] Bolukbasi, Tolga, et al. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings." NIPS'16.
- [3] Aboagye, Prince Osei, et al. "Interpretable debiasing of vectorized language representations with iterative orthogonalization." ICLR'23