

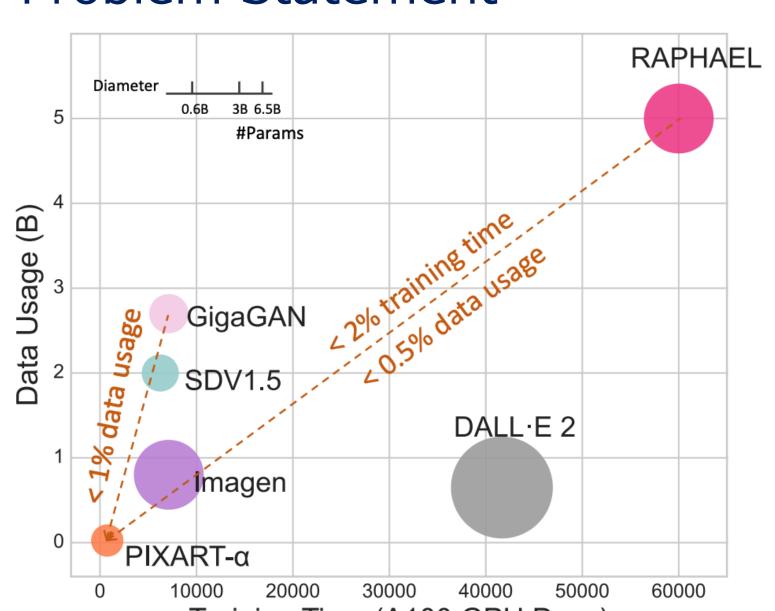
PIXART-a: Fast Training of Diffusion Transformer for Photorealistic Text-to-Image Synthesis

Junsong Chen^{1,2,3*}, Jincheng Yu^{1,4*}, Chongjian Ge^{1,3*}, Leiwei yao^{1,4*}, Enze Xie^{2 \dagger}, Yue wu¹, Zhongdao Wang¹, James Kwok⁴, Ping Luo³, Huchuan Lu², Zhenguo Li¹

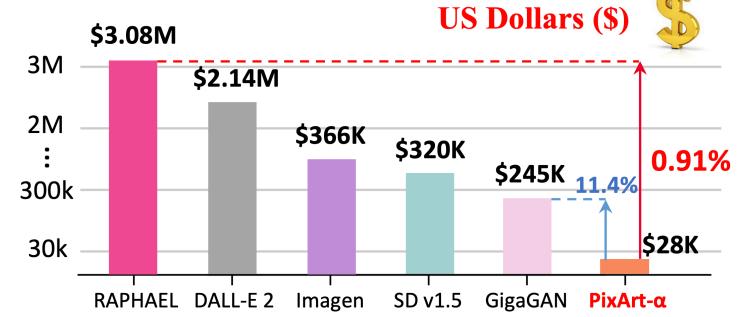
¹Huawei Noah's Ark Lab ²DLUT ³HKU ⁴HKUST

IIAU-LAB

Problem Statement



Training Time (A100 GPU Days) (a) Comparison of data usage and training time



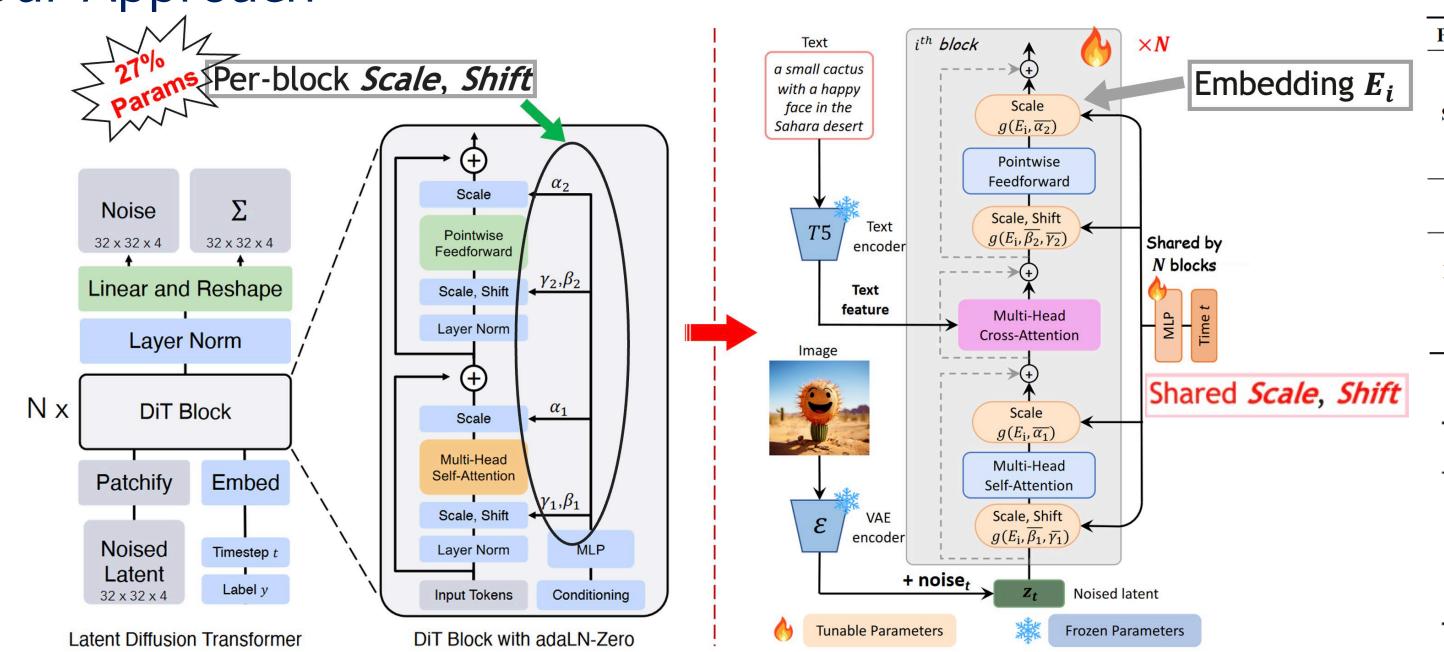
(b) Comparison of CO_2 emission and training cost

The AI Generative Content (AIGC) community faces a significant challenge as the most advanced Text-to-Image (T2I) models demand enormous training costs, equivalent to millions of GPU hours.

Contributions

- We decompose the intricate text-to-image generation task into three streamlined subtasks.
- We introduce an efficient Diffusion-
- **Transformer** structure to fast adapt from classconditioned DiT to text-conditioned PixArt-a.
- We propose an auto-labeling pipeline utilizing the state-of-the-art vision-language model to generate captions on the SAM.

Our Approach



Efficient T2I Transformer Original DIT Architecture Model architecture of PIXART-a. A cross-attention module is integrated into each block to inject textual Text-image misalignmen Infrequent vocabular 310LX in Unionville, Virginia

			Low density	
Dataset	VN/DN	Total Noun	Average	
LAION	210K/2461K = 8.5%	72.0M	6.4/Img	
LAION-LLaVA	85K/646K = 13.3%	233.9M	20.9/Img	
SAM-LLaVA	23K/124K = 18.6%	327.9M	29.3/Img	
Internal	152K/582K = 26.1%	136.6M	12.2/Img	

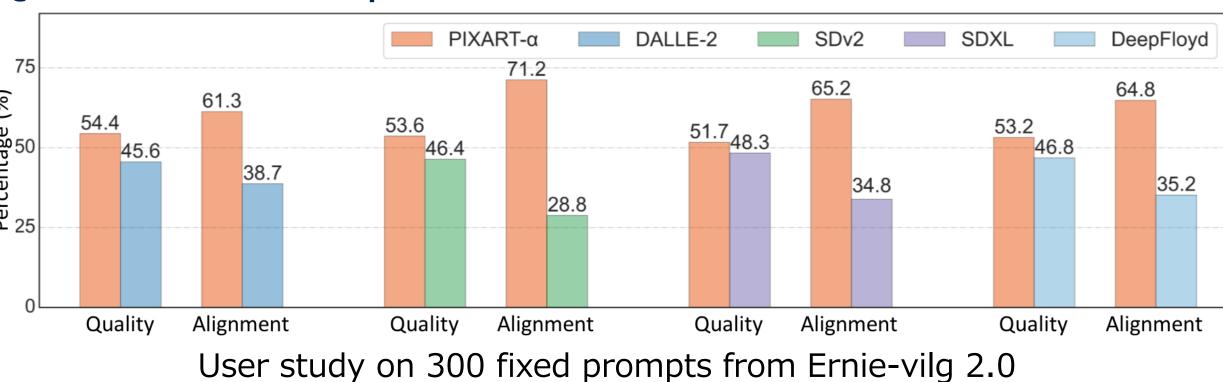
Statistics of noun concepts for different datasets.

Appealing Generations

nuclear exposition with a huge mushroom cloud, 120mm

LAION raw captions v.s LLaVA refined captions. LLaVA provides high-information density captions conditions. To optimize efficiency, all blocks share the same adaLN-single parameters for time conditions. that aid the model in grasping more concepts per iteration and boost text-image alignment efficiency

Quantitative Experiments



We thoroughly cor

Text prompt: A photo of [grey] [V] car

Method	Type	#Params	#Images	FID-30K↓	GPU days
DALL·E	Diff	12.0B	250M	27.50	-
GLIDE	Diff	5.0B	250M	12.24	-
LDM	Diff	1.4B	400M	12.64	-
DALL·E 2	Diff	6.5B	650M	10.39	41,667 A100
SDv1.5	Diff	0.9B	2000M	9.62	6,250 A100
GigaGAN	GAN	0.9B	2700M	9.09	4,783 A100
Imagen	Diff	3.0B	860M	7.27	7,132 A100
RAPHAEL	Diff	3.0B	5000M+	6.61	60,000 A100
PIXART- α	Diff	0.6B	25M	7.32	753 A100

mpare the PIXART-a with recent T2I models

Model	Attribute Binding		Object Relationship		Complex [↑]	
	Color ↑	Shape ↑	Texture ↑	Spatial [†]	Non-Spatial [†]	Complex
Stable v1.4	0.3765	0.3576	0.4156	0.1246	0.3079	0.3080
Stable v2	0.5065	0.4221	0.4922	0.1342	0.3096	0.3386
Composable v2	0.4063	0.3299	0.3645	0.0800	0.2980	0.2898
Structured v2	0.4990	0.4218	0.4900	0.1386	0.3111	0.3355
Attn-Exct v2	0.6400	0.4517	0.5963	0.1455	0.3109	0.3401
GORS	0.6603	0.4785	0.6287	0.1815	0.3193	0.3328
Dalle-2	0.5750	0.5464	0.6374	0.1283	0.3043	0.3696
SDXL	0.6369	0.5408	0.5637	0.2032	0.3110	0.4091
PIXART- α	0.6886	0.5582	0.7044	0.2082	0.3179	0.4117

Alignment evaluation on T2I-CompBench.

Generalization Extensions

Text prompt: Text prompt: [green] [V] car in garage [white] [V] car over water Input Images: 问界M5

photograph, highly detailed face, depth of PixArt-LCM (4 steps)

1024px **0.51s**

19th century wizard with a mysterious smile and a piercing gaze

on top of the

PixArt-DMD (1 step) 512px **0.1s**

Style control with text.

PixArt-Dreambooth

PixArt-ControlNet