

Energy-guided Entropic Neural Optimal Transport

Petr Mokrov¹ Alexander Korotin^{1,2} Alexander Kolesov¹
Nikita Gushchin¹ Evgeny Burnaev^{1,2}

 1 Skolkovo Institute of Science and Technology 2 Artificial Intelligence Research Institute

2024

Entropic Optimal Transport. Theoretical formulation¹

Let $\mathbb P$ and $\mathbb Q$ be continuous distributions on $\mathcal X\subset\mathbb R^{D_x}$ and $\mathcal Y\subset\mathbb R^{D_y}$. Entropic Optimal Transport (EOT) is as follows:

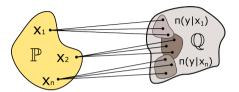
$$\mathsf{EOT}_{c,\epsilon}(\mathbb{P},\mathbb{Q}) = \min_{\pi \in \Pi(\mathbb{P},\mathbb{Q})} \int_{\mathcal{X}} C\big(x,\pi(\cdot|x)\big) d\mathbb{P}(x)$$

The minimizer π^* is called the Entropic OT plan.

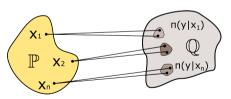
$$C(x, \pi(\cdot|x)) \stackrel{def}{=} \int_{\mathcal{Y}} \underbrace{c(x, y)}_{\text{Dissimilarity}} d\pi(y|x) - \epsilon \underbrace{H(\pi(\cdot|x))}_{\text{Diversity}}.$$

Regularization strength ϵ controls the diversity.

• $\Pi(\mathbb{P},\mathbb{Q})$ are distributions on $\mathcal{X} \times \mathcal{Y}$ with marginals \mathbb{P} , \mathbb{Q}



Stochastic EOT maps for large ϵ .



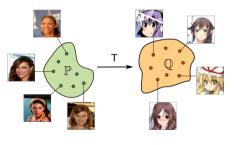
Stochastic EOT maps for small $\epsilon.$

¹Marco Cuturi (2013). "Sinkhorn distances: Lightspeed computation of optimal transport". In: Advances in neural information processing systems 26.

Entropic Optimal Transport. Applications

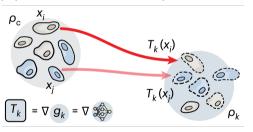
Domain Translation.²

By considering two unpaired image datasets as samples from $\mathbb P$ and $\mathbb Q$, EOT learns a map between datasets that preserves content.



Single-Cell (SC) Biological data.³

SC technology determines the gene expression profile of each measured cell, but destroys all measured cells. EOT learns map between cell populations before and after perturbation.



²Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev (2023). "Neural Optimal Transport". In: International Conference on Learning Representations.

³Charlotte Bunne et al. (2023). "Learning single-cell perturbation responses using neural optimal transport". In: *Nature Methods*. pp. 1–10.

Solving EOT problem: Lagrangian multipliers \rightarrow Max-min

♦ Original **EOT** problem:

$$\pi^* = \underset{\pi \in \Pi(\mathbb{P}, \mathbb{Q})}{\arg \min} \left\{ \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \underbrace{d\pi(x, y)}_{=d\pi(y|x)d\mathbb{P}(x)} - \epsilon \int_{\mathcal{X}} H(\pi(\cdot|x))d\mathbb{P}(x) \right\}$$

 $igoplus \underline{\text{max-min}}$ (dual) EOT problem, the second marginal distribution constraint is $\underline{\text{relaxed}}$ with Lagrangian multiplier $f: \mathcal{Y} \to \mathbb{R}$ (continuous functions):

$$(f^*, \pi^*) = \arg \sup_{\pi \in \Pi(\mathbb{P})} \left\{ \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y) - \epsilon \int_{\mathcal{X}} H(\pi(\cdot | x)) d\mathbb{P}(x) - \int_{\mathcal{X} \times \mathcal{Y}} f(y) d\pi(x, y) + \int_{\mathcal{Y}} f(y) d\mathbb{Q}(y) \right\}$$

Remark (max-min reformulation of the EOT problem)

<u>Original</u> and <u>max-min</u> EOT problems from above are equivalent, i.e., they yield the same optimal value EOT_{c, ϵ} and permit the same minimizer $\pi^* \in \Pi(\mathbb{P}, \mathbb{Q})$.

Solving EOT problem: Max-min \rightarrow Energy-based EOT

♦ max-min **EOT** problem:

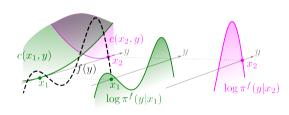
$$\sup_{f} \underbrace{\min_{\pi \in \Pi(\mathbb{P})} \left\{ \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y) - \epsilon \int_{\mathcal{X}} H(\pi(\cdot|x)) d\mathbb{P}(x) - \int_{\mathcal{X} \times \mathcal{Y}} f(y) d\pi(x,y) + \int_{\mathcal{Y}} f(y) d\mathbb{Q}(y) \right\}}_{\text{has a closed-form solution } \pi^f \in \Pi(\mathbb{P})}$$

Conditional plans $\pi^f(\cdot|x)$ have **known unnormalized density**:

$$\pi^f(y|x) = \frac{1}{Z(f,x)} \exp\left(\frac{f(y) - c(x,y)}{\epsilon}\right)$$

- $Z(f,x) \stackrel{\text{def}}{=} \int_{\mathcal{V}} \exp\left(\frac{f(y) c(x,y)}{\epsilon}\right) dy$ is the **Normalization** const.
- ♦ Energy-based EOT (after substitution π^f):

$$f^* = \underset{f}{\operatorname{arg sup}} \left\{ -\epsilon \int_{\mathcal{X}} \log Z(f, x) d\mathbb{P}(x) + \int_{\mathcal{Y}} f(y) d\mathbb{Q}(y) \right\}, \quad \pi^* = \pi^{f^*}.$$



Energy-based EOT: Dealing with π^f

$$d\pi^f(x,y) = d\pi^f(y|x)d\mathbb{P}(x); \quad \pi^f(y|x) = \frac{1}{Z(f,x)} \exp\Big(\frac{f(y) - c(x,y)}{\epsilon}\Big).$$

Sampling from π^f .

1. Sample $x \sim \mathbb{P}$ (source distribution/dataset).

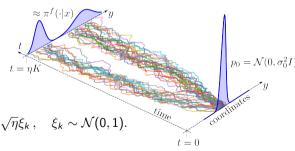
Sampling from $\pi^f(\cdot|x)$. **Euler-Maruyama**

simulation (a.k.a. Langevin sampling):

- Take prior p_0 (e.g., Gaussian or Uniform); Sample $y_0 \sim p_0$.
- Fix $\eta > 0$ and for $k = 0, 1, \dots K$ do:

$$y_{k+1} = y_k - \frac{\eta}{2} \nabla_y \left(\frac{c(x,y) - f(y)}{\epsilon} \right) \Big|_{y=y_k} + \sqrt{\eta} \xi_k, \quad \xi_k \sim \mathcal{N}(0,1).$$

• Output $y = y_K$. It is (approximately) sampled from $\pi^f(\cdot|x)$.



2. Sample $v \sim \pi^f(\cdot|x)$ (see below).

Energy-based EOT: Training aspects

♦ Energy-based EOT objective w.r.t. (scalar-valued) Neural Network f_θ :

$$\mathcal{L}(\theta) = -\epsilon \int_{\mathcal{X}} \log Z(f_{\theta}, x) d\mathbb{P}(x) + \int_{\mathcal{Y}} f_{\theta}(y) d\mathbb{Q}(y) \longrightarrow \max_{\theta}.$$

Theorem (Gradient of Energy-based EOT loss $\mathcal{L}(\theta)$)

$$\frac{\partial}{\partial \theta} \mathcal{L}(\theta) = -\int_{\mathcal{X} \times \mathcal{Y}} \left[\frac{\partial}{\partial \theta} f_{\theta}(y) \right] d\pi^{f_{\theta}}(x, y) + \int_{\mathcal{Y}} \left[\frac{\partial}{\partial \theta} f_{\theta}(y) \right] d\mathbb{Q}(y).$$

Proxy loss for Energy-based EOT:

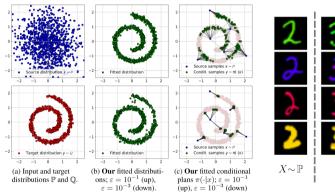
Loss $L(\theta)$ is **maximized** with help of a stochastic gradient ascent procedure.

Training Energy-based EOT: Ultimate Algorithm

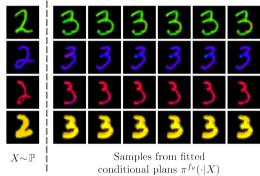
Algorithm 1: Entropic OT via Energy-Based Modelling

```
Input: Source and target distributions \mathbb{P} and \mathbb{Q}, accessible by samples;
               Entropy regularization coefficient \epsilon > 0, cost function c(x,y): \mathbb{R}^{D_x} \times \mathbb{R}^{D_y} \to \mathbb{R}:
               number of Langevin steps K > 0, Langevin discretization step size \eta > 0;
               basic noise std \sigma_0 > 0; potential network f_\theta : \mathbb{R}^{D_y} \to \mathbb{R}, batch size N > 0.
Output: trained potential network f_{\theta^*} recovering optimal conditional EOT plans
for i = 1, 2, ... do
      Derive batches \{x_n\}_{n=1}^N = X \sim \mathbb{P}, \{y_n\}_{n=1}^N = Y \sim \mathbb{Q} of sizes N;
      Sample basic noise Y^{(0)} \sim \mathcal{N}(0, \sigma_0) of size N;
      for k = 1, 2, ..., K do
             Sample Z^{(k)} = \{z_n^{(k)}\}_{n=1}^N, where z_n^{(k)} \sim \mathcal{N}(0,1);
          Obtain Y^{(k)} = \{y_n^{(k)}\}_{n=1}^N with Langevin steps:
     y_n^{(k)} \leftarrow y_n^{(k-1)} + \frac{\eta}{2\epsilon} \cdot \mathsf{stop\_grad} \left( \frac{\partial}{\partial y} \left[ f_\theta(y) - c(x_n, y) \right] \Big|_{y = y_n^{(k-1)}} \right) + \sqrt{\eta} z_n^{(k)}
     \widehat{L} \leftarrow -\frac{1}{N} \left[ \sum_{y_n \in Y(K)} f_{\theta} \left( y_n^{(K)} \right) \right] + \frac{1}{N} \left[ \sum_{y_n \in Y} f_{\theta} \left( y_n \right) \right];
      Perform a gradient step over \theta by using \frac{\partial \hat{L}}{\partial \theta};
```

Energy-guided EOT: Experiments



2D Gaussian to Swissroll translation with different Entropic regularizations.



Unpaired image to image translation on Colored MNIST.

Energy-guided EOT: Latent-space AFHQ'512 experiment

Unpaired I2I by latent-space Energy-guided EOT

 $\begin{array}{c} \text{source } 512 \times 512 \\ \text{images} \end{array}$

generated 512×512 images by **Energy-guided EOT** working in the latent space of StyleGAN

Thank you!

Energy-guided Entropic Neural Optimal Transport

Towards the Unification of Entropic Optimal Transport and Energy-based Modeling.

https://github.com/PetrMokrov/Energy-guided-Entropic-OT

OpenReview.net

https://openreview.net/forum?id=d6tUsZeVs7

https://iclr.cc/virtual/2024/poster/18274